Open Access Open Access  Restricted Access Subscription or Fee Access

Review on the Designs and Characteristics of High-Electron Mobility Transistors

Subhadeep Mukhopadhyay, Sanjib Kalita

Abstract


Many authors have presented different physics based analytical models to manifest the characteristics of high electron mobility transistors (HEMTs). The designs of HEMTs are highly important to achieve sufficient efficiency. Conduction band engineering in HEMTs is the reason to generate a two-dimensional electron gas (2DEG) at the heterointerface. Microelectromechanical systems (MEMS) and microwave engineering are the relevant areas for the applications of HEMTs.

Full Text:

PDF

References


Y.F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, U.K. Mishra. Very-high power density AlGaN/GaN HEMTs, IEEE Trans Electron Devices. 2001; 48: 586–90p.

M. Charfeddine, H. Belmabrouk, M.A. Zaidi, H. Maaref. 2-D Theoretical model for current-voltage characteristics in AlGaN/GaN HEMTs, J Modern Phys. 2012; 3: 881–6p.

T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, U.K. Mishra. “AlGaN/GaN high electron mobility transistors with InGaN back-barriers, IEEE Electron Device Lett. 2006; 27: 13–5p.

J. Joh, J.A.D. Alamo. Critical voltage for electrical degradation of GaN high-electron mobility transistors, IEEE Electron Device Lett. 2008; 29: 287–9p.

J.C. Huang, G.S. Jackson, S. Shanfield, A. Platzker, P.K. Saledas, C. Weichert. An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for X- and Ku-band power applications, IEEE Trans Microw Theory Tech. 1993; 41: 752–9p.

D.J. Widiger, I.C. Kizilyalli, K. Hess, J.J. Coleman. Two-dimensional transient simulation of an idealized high electron mobility transistor, IEEE Trans Electron Devices. 1985; ED-32: 1092–102p.

Y. Zhang, J. Singh. Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor, J Appl Phys. 1999; 85: 587–94p.

L. Shen, S. Heikman, B. Moran, R. Coffie, N.Q. Zhang, D. Buttari, I.P. Smorchkova, S. Keller, S.P. DenBaars, U.K. Mishra. AlGaN/AlN/GaN high-power microwave HEMT, IEEE Electron Device Lett. 2001; 22: 457–9p.

J. Wang, M. Lundstrom. Ballistic transport in high electron mobility transistors, IEEE Trans Electron Devices. 2003; 50: 1604–9p.

S. Rajan, A. Chini, M.H. Wong, J.S. Speck, U.K. Mishra. N-polar GaN/AlGaN/GaN high electron mobility transistors, J Appl Phys. 2007; 102: 044501p.

T. Simlinger, H. Brech, T. Grave, S. Selberherr. Simulation of submicron double-heterojunction high electron mobility transistors with MINIMOS-NT, IEEE Trans Electron Devices. 1997; 44: 700–7p.

W.D. Hu, X.S. Chen, F. Yin, J.B. Zhang, W. Lu. Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors, J Appl Phys. 2009; 105: 084502p.

H. R. Yeager, R. W. Dutton. Circuit simulation models for the high electron mobility transistor, IEEE Trans Electron Devices. 1986; ED-33: 682–92p.

Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, T. Mimura. Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh fT of 562 GHz, IEEE Electron Device Lett. 2002; 23: 573–5p.

M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, C. Dua. Mechanisms of RF current collapse in AlGaN-GaN high electron mobility transistors, IEEE Trans Device Mater Reliabil. 2008; 8: 240–7p.

G. W. Wang, W. H. Ku. An analytical and computer-aided model of the AlGaAs/GaAs high electron mobility transistor, IEEE Trans Electron Devices. 1986; ED-33: 657–63p.

F.A. Marino, N. Faralli, T. Palacios, D.K. Ferry, S.M. Goodnick, M. Saraniti. Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors, IEEE Trans Electron Devices. 2010; 57: 353–60p.

T. H. Yu, K. F. Brennan. Theoretical study of a GaN-AlGaN high electron mobility transistor including a nonlinear polarization model, IEEE Trans Electron Devices. 2003; 50: 315–23p.

Y. Chang, Y. Zhang, Y. Zhang, K. Y. Tong. A thermal model for static current characteristics of AlGaN/GaN high electron mobility transistors including self-heating effect, J Appl Phys. 2006; 99: 044501p.

K. Kalna, S. Roy, A. Asenov, K. Elgaid, I. Thayne. Scaling of pseudomorphic high electron mobility transistors to decanano dimensions. Solid-State Electron. 2002; 46: 631–8p.

S. Babiker, A. Asenov, S. Roy, S. P. Beaumont. Strain engineered pHEMTs on virtual substrates: a Monte Carlo simulation study, Solid-State Electron. 1999; 43: 1281–8p.

K. Kalna, A. Asenov. Role of multiple delta doping in PHEMTs scaled to sub-100 nm dimensions, Solid-State Electron. 2004; 48: 1223–32p.

H. C. Chiu, J. S. Fu, C. W. Chen. RF performance of GaAs pHEMT switches with various upper/lower δ-doped ratio designs, Solid-State Electron. 2009; 53: 181–4p.

N. Seoane, A. J. Garcia-Loureiro, K. Kalna, A. Asenov. Impact of intrinsic parameter fluctuations on the performance of HEMTs studied with a 3D parallel drift-diffusion simulator, Solid-State Electron. 2007; 51: 481–8p.

K. Kalna, A. Asenov. Nonequilibrium and ballistic transport, and backscattering in decanano HEMTs: a Monte Carlo simulation study, Math Comput Simul. 2003; 62: 357–66p.

M. Juncai, Z. Jincheng, X. Junshuai, L. Zhiyu, L. Ziyang, X. Xiaoyong, M. Xiaohua, H. Yue. Characteristics of AlGaN/GaN/AlGaN double heterojunction HEMTs with an improved breakdown voltage, J Semicond. 2012; 33: 014002p.

M. Mishra, M. J. Kumar, Y. Singh, S. R. Shukla, H. P. Vyas, D. S. Rawal, A. Naik, H. S. Sharma, B. K. Sehgal, R. Gulati. Inverse modeling of delta doped pseudomorphic high electron mobility transistors, J Vac Sci Technol A. 2004; 22: 1036–9p.

M. K. Chattopadhyay, S. Tokekar. Thermal model for DC characteristics of AlGaN/GaN HEMTs including self-heating effect and non-linear polarization, Microelectron J. 2008; 39: 1181–8p.

M. K. Chattopadhyay, S. Tokekar. Temperature and polarization dependent polynomial based non-linear analytical model for gate capacitance of AlmGa1-mN/GaN MODFET, Solid-State Electron. 2006; 50: 220–7p.

M. K. Chattopadhyay, S. Tokekar. Analytical model for the transconductance of microwave AlmGa1-mN/GaN HEMTs including nonlinear macroscopic polarization and parasitic MESFET conduction, Microw Op Technol Lett. 2007; 49: 382–9p.

M. Korwal, S. Haldar, M. Gupta, R. S. Gupta. Parasitic resistance and polarization-dependent polynomial-based non-linear analytical charge-control model for AlGaN/GaN MODFET for microwave frequency applications, Microw Opt Technol Lett. 2003; 38: 371–8p.

S. Khandelwal, N. Goyal, T. A. Fjeldly. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices, IEEE Trans Electron Devices. 2011; 58: 3622–5p.

S. Khandelwal, Y. S. Chauhan, T. A. Fjeldly. Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices, IEEE Trans Electron Devices. 2012; 59: 2856–60p.

S. Khandelwal, C. Yadav, S. Agnihotri, Y. S. Chauhan, A. Curutchet, T. Zimmer, J. C. D. Jaeger, N. Defrance, T. A. Fjeldly. Robust surface-potential-based compact model for GaN HEMT IC design, IEEE Trans Electron Devices. 2013; 60: 3216–22p.

S. Khandelwal, T. A. Fjeldly. A physics based compact model of I-V and C-V characteristics in AlGaN/GaN HEMT devices, Solid-State Electronics. 2012; 76: 60–6p.

F. M. Yigletu, S. Khandelwal, T. A. Fjeldly, B. Iñiguez, “Compact Charge-Based Physical Models for Current and Capacitances in AlGaN/GaN HEMTs”, IEEE Transactions on Electron Devices, 60 (2013) 3746–52p.

S. Ghosh, A. Dasgupta, S. Khandelwal, S. Agnihotri, Y. S. Chauhan, “Surface-Potential-Based Compact Modeling of Gate Current in AlGaN/GaN HEMTs”, IEEE Transactions on Electron Devices, 62 (2015) 443–8p.

S. Khandelwal, T. A. Fjeldly. A physics based compact model for drain current in AlGaN/GaN HEMT devices, In: Proceedings of the 2012 24th International Symposium on Power Semiconductor Devices and ICs. 3–7 June 2012, Bruges, Belgium, 241–4p.

S. A. Ahsan, S. Ghosh, K. Sharma, A. Dasgupta, S. Khandelwal, Y. S. Chauhan. Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior, IEEE Trans Electron Devices. 2016; 63: 565–72p.

A. Dasgupta, S. Khandelwal, Y. S. Chauhan. Surface potential based modeling of thermal noise for HEMT circuit simulation, IEEE Microw Wirel Compon Lett. 2015; 25: 376–8p.

A. Dasgupta, S. Khandelwal, Y. S. Chauhan. Compact modeling of flicker noise in HEMTs, J Electron Devices Soc. 2014; 2: 174–8p.

S. Khandelwal, N. Goyal, T. A. Fjeldly. A precise physics-based compact model for 2-DEG charge density in GaAs HEMTs applicable in all regions of device operation, Solid-State Electron. 2013; 79: 22–5p.

T. R. Lenka, G. N. Dash, A. K. Panda. A comparative 2DEG study of InxAl1-xN/(In, Al, Ga)N/GaN-based HEMTs, Phys Proc. 2012; 25: 36–43p.

T. R. Lenka, A. K. Panda. Effect of structural parameters on 2DEG density and C~V characteristics of AlxGa1-xN/AlN/GaN-based HEMT, Indian J Pure Appl Phys. 2011; 49: 416–22p.

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT, J Semiconduct. 2013; 34: 114003p.

A. Ansari, M. Rais-Zadeh, “A Thickness-Mode AlGaN/GaN Resonant Body High Electron Mobility Transistor”, IEEE Transactions on Electron Devices, 61 (2014) 1006–13p.

C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, W. C. Liu. Pd-Oxide- Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor, IEEE Sens J. 2006; 6: 287–92p.

X. Yu, C. Li, Z.N. Low, J. Lin, T.J. Anderson, H.T. Wang, F. Ren, Y.L. Wang, C.Y. Chang, S.J. Pearton, C.H. Hsu, A. Osinsky, A. Dabiran, P. Chow, C. Balaban, J. Painter. Wireless hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode sensors, Sensors Actuators B. 2008; 135: 188–94p.

H. H. Lee, M. Bae, S. H. Jo, J. K. Shin, D. H. Son, C. H. Won, H. M. Jeong, J. H. Lee, S. W. Kang. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein, Sensors. 2015; 15: 18416–26p.

A. Ould-Abbas, O. Zeggai, M. Bouchaour, H. Zeggai, N. Sahouane, M. Madani, D. Trari, M. Boukais, N. E. Chabane-Sari. Study on functionalizing the surface of AlGaN/GaN high electron mobility transistor based sensors, J Optoelectron Adv Mater. 2013; 15: 1323–7p.




DOI: https://doi.org/10.37628/ijmet.v4i1.765

Refbacks

  • There are currently no refbacks.