
 

  
 
 
 

JEPST (2015) 38-43 © JournalsPub 2015. All Rights Reserved                                                                Page 38 

International Journal of Electrical Power System and Technology  
Vol. 1: Issue 1  

www.journalspub.com 

 

Dynamic System Identification for Looper Tension Control Using 

BPNN and Kalman Filtering 
 

V.D. Bavdhane*
 

Department of Electrical Engineering, SKN Sinhgad College of Engineering, Pandharpur, Maharashtra, India 

 

Abstract 
System identification is an important area in control system. This paper discusses some of the 

reasons that cause the slow convergence of Back Propagation Neural Network (BPNN). This 

paper also comments on the effect of the number of neurons in the hidden layer when we 

apply BPNN with Kalman Filtering to dynamic system identification for a looper tension 

control. BPNN is based on LMS, and uses steepest descent method to find the optimum 

weights to the adjacent layer. It always consumes much time while training and it is not easy 

to get a global optimal value while applying to on-line training. The Levenberg–Marquardt 

algorithm (LMA) provides a numerical solution to the problem of minimizing a function, 

generally nonlinear, over a space of parameters of the function. Kalman Filtering is a better 

linear and discrete method for parameters estimation. By this way to solve a problem, it can 

involve the initial conditions, and also can be applied to stationary and non-stationary 

systems. So, applying BPNN and Kalman Filtering together to the dynamic system 

identification will give a better result both on convergent efficiency and stability. 
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INTRODUCTION 

When treating a control system, first of all, 

we have to infer the governing equation or 

transfer function based on some physical 

laws. However, it is very difficult to infer 

a mathematic model for a real system. 

Therefore, we need some experimental or 

numerical methods to establish the 

system’s model. This paper describes a 

method that can approach to the real 

system. It yielded results which were very 

close to the real system. 

  

Back Propagation Neural Network 

(BPNN) has a good performance in the 

function approximation 
[1]

. Applying 

BPNN to the system identification can 

acquire the accuracy of requirement easily. 

The weighting between adjacent layer’s 

neurons been adjusted by a systematic 

method to achieve an adaptive effect. 

BPNN tries to get the minimum mean 

square error between the expected value 

and the output value at the output layer by 

adjusting the weights. As input-output 

mapping may be highly non-linear it is 

difficult to get the optimum weighting 

function. 

  

The traditional technology of optimization 

is based on a deterministic criterion 

function, usually, using the sum of the 

mean square error between the expected 

value and the output of the network for 

total samples. Therefore, when using the 

steepest descent method it should adopt 

the way of batch mode theoretically. But 

this is incompetent to real time weighting 

changing situation. Contrastively, the 

technology developed by the method of 

stochastic can adjust the weighting in real 

time according to the information of the 

past and the present. The Levenberg-

Marquardt (LM) algorithm is an iterative 
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technique that locates the minimum of a 

function that is expressed as the sum of 

squares of nonlinear functions. Kalman 

Filtering is a famous method in linear 

system estimation based on the method of 

stochastic. So, combining BPNN and 

Kalman Filtering to system identification 

gives a satisfactory result in convergence 

efficiency and a consistency result 
[2, 3]

. 

 

The plant model is a rolling mill that uses 

a looper for tension control. Tension is 

caused by the difference between the exit 

speed v1 in stand one and the entry speed 

v2 in stand two. Looper height H(t) is 

related to looper storage length L(t) by the 

mass conservation principle and can be 

empirically approximated by: 

 

H(t)=1/(α+β√L(t))       (1) 

 

α= 0.0001955567 and β = 0.028845145 
 

  
Fig. 1: A Rolling Mill with Looper 

Control. 

 

NEURAL NETWORK APPROACH 

Back propagation (BP) algorithm is the 

one of the extended algorithm of Least 

Mean Square (LMS) used to train the 

multilayer neural network. It uses Mean 

Square Error (MSE) as the index of 

performance function. To find the 

direction of the optimum weight 

adjustment, this method uses the steepest 

decent method during training process. 

The transfers function of neurons f
1
 and f

2 

can be a nonlinear differentiable function 

like ‘logsig’, ‘tansig’ etc. as shown in 

Figure 1. It has a good ability of function 

approach and pattern recognition 
[1, 4]

.  

The weight updation rule is the function of 

error which is given as,   

 
 ( ) e kF w

e k
w w




 
     (1) 

 

Where, F(w) is performance function. 

 

 
Fig. 2: The Sketch of Two Layers NN. 

 

This algorithm uses the estimated value of 

error function at every iteration which 

causes slow convergence. For the 

multilayer network the performance curve 

may fall into local minima and cannot find 

the global optima. Kalman filter can help 

in these conditions. 

 

LEVENBERG MARQUARDT 

ALGORITHM (LMA) 

The Levenberg-Marquardt (LM) algorithm 

is an iterative technique that locates the 

minimum of a function that is expressed as 

the sum of squares of nonlinear functions. 

This algorithm appears to be the fastest 

method for training moderate-sized feed 

forward neural networks (up to several 

hundred weights). It also has a very 

efficient MATLAB implementation, 

because the solution of the matrix equation 

is a built-in function, so its attributes 

become even more pronounced in a 

MATLAB setting. 

 

The main drawback of the Levenberg-

Marquardt algorithm is that it requires the 

storage of some matrices that can be quite 

large for certain problems. The size of the 

Jacobian matrix is Q x n, where Q is the 

number of training sets and n is the 

number of weights and biases in the 

network. 

 

If mem_reduc is set to 1, then the full 

Jacobian is computed, and no memory 
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reduction is achieved. If mem_reduc is set 

to 2, then only half of the Jacobian is 

computed at one time. This saves half the 

memory used by the calculation of the full 

Jacobian. 

 

KALMAN FILTERING  

Kalman Filtering is an optimum parameter 

estimator that can be used for linear and 

non-linear systems. The linear discrete 

model of Kalman Filtering is shown in 

Figure 3. The state space equations are 

introduced by Eq. (5) and (6) 
[2, 5]

:  

 

 
Fig. 3: Structure of Kalman Filtering. 

 

1k k k k kX F X G W          (2) 
Y

k k k kY H X V         (3) 

Where, 

 
1k k

X


:  State Variable 

 
1k k

Y


:   Observation or Output Value 

   1 2, ,...kW W W : Input Noise 

   0 1, ,...kV V V  : Noise of Measurement 

 T

k i k kiE W W Q  : Covariance of Input 

Noise 

 T

k i k kiE V V R   : Covariance of  

 

Measurement Noise 

 
1

1 1

T

k k k k k k k k k kK F P H H P H R 



        (4) 

 1 1 1

T

k k k k k k k k k k kX X P K Y H X          (5) 

1 1

T

k k k k k k k kP P K H P                               (6)  

1k k k k kX F X                                          (7) 

1

T T

k k k k k k k k kP F P F G Q G                        (8) 

Eq. (4) gives Kalman Gain; Eq. (5) and (6) 

are the measurement update equations; 

Eq. (7) and (8) are the time update 

equations.  

 

Intuitively, there is a definite meaning in 

Eq. (5). It reveals that the estimated value 

of state filtering at k
th

 step is based on the 

estimated value that has been calculated by 

the data of the last step, and 

( 1

T

k k k kY H X   ) the correction to the 

measurement value at present. The amount 

of calibration been adjusted by the Kk. 

With this algorithm convergence is faster 

however, stability is not satisfactory. 

Hence, BPNN and Kalman filtering are 

together applied to the looper tension 

control problem to achieve both better 

convergence and stability. 

 

BPNN AND KALMAN FILTERING 

ALGORITHM  

Figure 4 shows the operation of a neuron 

which can be divided into two parts, one is 

the linear summation part and another one 

is the nonlinear functional part. This paper 

applies the algorithm of Kalman Filtering 

to get the optimal weighting and a better 

convergence efficiency of the network at 

the linear part.  

 

 
Fig. 4: Operation inside a Neuron. 

 

At the nonlinear part, we still apply the 

steepest descent method to estimate the 

total output with a neuron. It means that 

we can use –ΔE/Δy
j
k as the adjustment 

direction of y
j
k, so, the estimation of the 

total summation with a neuron can be 

written as Eq. (9) and (10).  

 

                                    (9) 

              (10) 
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At the linear part, we can establish a 

Kalman filtering model for each neural 

shown as Figure 5. 

 

 
Fig. 5: Kalman Filtering Model for Each 

Neuron. 

 

To compare the Figure 3 and 5, we can 

write down Eq. (14)~Eq. (16). 

 

                              (11) 

                            (12) 

                            (13) 

 

 
 

Gaussian white noise with zero mean 

value. Kalman Filtering algorithm gives 

iteration learning equations as follows: 

 

(14) 

 

(15) 

 

L, j: express the last and hidden layer, 

k: express one of the neuron in the hidden 

layers. 

 

Where, 

 

(16) 

 

 (17) 

 

SIMULATION RESULTS OF 

LOOPER TENSION CONTROL 

PLANT MODEL 

Figure 6 indicates that the convergence of 

BPNN is very slow. At some point, it 

either rapidly converges, or jumps to a 

new level where it would again make little 

or no progress for quite a while.  

 

 
Fig. 6: MSE v/s Epochs for BPNN 

Algorithm. 

 

Figure 7 indicates faster convergence than 

BPNN. Performance goal of 1e-005 MSE 

is obtained after 356 epochs. LMA is 

fastest converging algorithm than BPNN 

with steepest descent. 

 

 
Fig. 7: MSE v/s Epochs for LMA. 

 

Figure 8 indicates convergence of MSE 

within just 30 epochs for a goal of 1e-005. 

In this case extended Kalman filtering 

algorithm is used.  
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Fig. 8: MSE v/s Epochs for EKF+BPNN. 

 

 
Fig. 9: The MSE Variance of New 

Algorithm and BPNN While Training. 

 

LIMITATIONS OF KALMAN 

FILTERING 

1 The Kalman filter assumes that the 

noise properties are known. What if we 

do not know anything about the system 

noise? 

2 The Kalman filter minimizes the 

"average" estimation error. What if we 

would prefer to minimize the worst-

case estimation error? 
[6]

 

 

EXTENDED KALMAN FILTERING 

The Extended Kalman filter (EKF) gives 

an approximation of the optimal estimate. 

The non-linearities of the systems’ 

dynamics are approximated by a linearized 

version of the non-linear system model 

around the last state estimate. For this 

approximation to be valid, this 

linearization should be a good 

approximation of the non-linear model in 

the entire uncertainty domain associated 

with the state estimate.  

 

 
 

Extended Kalman FILTER DYNAMIC 

CONCEPT 

One iteration of the EKF is composed by 

the following consecutive steps: 

1. Consider the last filtered state estimate 

ˆx(k|k), 

2. Linearize the system dynamics, xk+1 = 

f(xk) + wk around ˆx(k|k), 

3. Apply the prediction step of the 

Kalman filter to the linearized system 

dynamics just obtained, yielding ˆx(k + 

1|k) and P(k + 1|k), 

4. Linearize the observation dynamics, yk 

= h(xk) + vk around ˆx(k + 1|k), 

5. Apply the filtering or update cycle of 

the Kalman filter to the linearized 

observation dynamics, yielding ˆx(k + 

1|k + 1) and P(k + 1|k + 1). 

 

Let F(k) and H(k) be the Jacobian matrices 

of f(.) and h(.), denoted by 

F(k) = 5fk |ˆx(k|k) 

H(k + 1) = 5h |ˆx(k+1|k) 

 

The Extended Kalman filter algorithm is 

stated below: 

 

Predict Cycle 

ˆx(k + 1|k) = fk(ˆx(k|k)) 

P(k + 1|k) = F(k)P(k|k)FT (k) + Q(k) 

 

Filtered Cycle 

ˆx(k + 1|k + 1) = ˆx(k + 1|k) + K(k + 

1)[yk+1 − hk+1(ˆx(k + 1|k))] 



  Dynamic System Identification for Looper Tension Control                                                        Bavdhane VD 

 

 

JEPST (2015) 38-43 © JournalsPub 2015. All Rights Reserved                                                                Page 43 

K(k + 1) = P(k + 1|k)HT (k + 1)[H(k + 

1)P(k + 1|k)HT (k + 1) + R(k + 1)]−1  

P(k + 1|k + 1) = [I − K(k + 1)H(k + 1)]P(k 

+ 1|k) 

 

Contrary to the Kalman filter, the EKF 

may diverge, if the consecutive 

linearizations are not a good 

approximation of the linear model in the 

entire associated uncertainty domain 
[7–12]

. 

 

CONCLUSIONS 

The Kalman Filtering algorithm can give 

better performance to the dynamic system 

identification. From the example shown 

above, the following results should be 

highlighted:  

1. The robustness of the new algorithm is 

better than the BPNN algorithm. It can 

always find the optimal weighting no 

matter what the initial weighting of the 

network is. By BPNN algorithm, the 

final weighting of the network is 

always affected by the initial 

weighting, so, we must run many times 

to find the optimal weighting. 

2. It is not necessary to use too many 

neurons at the hidden layer to keep off 

the over fitting happen, and can save 

more memory storage.  

3. The new algorithm is more predictable 

in its training. We notice that the 

backpropagation algorithm tends to 

reach a certain mean-squared error and 

remain there for quite a while making 

little or no progress.  

4. The convergence of the back 

propagation algorithm depends heavily 

on the magnitude of the initial weights. 

If chosen incorrectly, the algorithm 

takes a long time to converge.  

 

The new algorithm consumed much time 

for each iteration step, but it can save more 

numbers of iteration as Kalman filtering 

has good performance to the parameter 

estimation. Further performance can be 

improved by using Extended Kalman 

Filtering. 

 

REFERENCES 

1.  Hagan Martin T. Neural Network 

Design. PWS. 1999.  

2.  Kung-Thin Lou. On the Study of the 

Multilayer Neural Networks and 

Kalman Filtering for System 

Identification and Control. Project of 

NSC. 1993.  

3.  Selero RS, Tepedelenliolu. A Fast 

Algorithm for Training Feedforward 

Neural Networks. IEEE Trans. Signal 

Process. 1992; 40(1): 202~210p.  

4.  Simon. Neural Networks-A 

Comprehensive Foundation. PTR. 

1999. 

5.  Han Chen Thin. Control Systems of 

Adaptive Technology. Press. 2002. 

6. www.innovatia.com/software/papers/m

inimax.htm 

7. en.wikipedia.org/wiki/Extended_Kalm

an_filter 

8. www.cs.ucf.edu/~mikel/Research/.../kal

man-filters-a-tutorial.pdf 

http://users.isr.ist.utl.pt/~mir/pub/kalm

an.pdf 

9.  Narendra KS. Identification and 

Control of Dynamical Systems Using 

Neural Networks. IEEE Trans. Neural 

Netw. Mar 1991; 2(2): 252–262p. 

10.  Janabi-Sharifi F, A Neuro-Fuzzy 

System for Looper Tension Control in 

Rolling Mills. 

11.  Lary DJ, Mussa HY. Using an 

Extended Kalman Filter Learning 

Algorithm for Feed-Forward Neural 

Networks to Describe Tracer 

Correlations. Atmos. Chem. Phys. 

Discuss. 2004; 4: 3653–3667p. 

 

http://www.innovatia.com/software/papers/minimax.htm
http://www.innovatia.com/software/papers/minimax.htm
http://www.cs.ucf.edu/~mikel/Research/.../kalman-filters-a-tutorial.pdf
http://www.cs.ucf.edu/~mikel/Research/.../kalman-filters-a-tutorial.pdf

