Open Access Open Access  Restricted Access Subscription or Fee Access

An Integrated Electrochemical Device based on Earth-abundant Asymmetrical Materials Using Super Capacitors

Kavitha Hariraman, Dr. Mukil Alagirisamy, Dr. Janani Selvam

Abstract


In this context, designing and fabrication of high performance Asymmetrical supercapacitor cells is the main focus our present research and is described in paper. The mass ratio of the positive and negative electrode materials affects how well polymer electrode in asymmetric supercapacitor operates. Such asymmetric supercapacitors are optimised by taking into account the capacitance and potential stability limits of the electrodes. The performance of Polypyrrole electrode in asymmetric supercapacitor is influenced by the mass ratio of the positive and negative electrode materials. By taking into account the capacitance and potential stability constraints of the electrodes, such asymmetric capacitors are optimised.


Full Text:

PDF

References


Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media.

Nosheen, S., Irfan, M., Habib, F., Abbas, S. Z., Waseem, B., Iftikhar, F., ... & Aziz, A. K. (2020). Synthesis and characterization of polypyrrole synthesized via different routes. Int J Eng Res Technol, 9(6), 1630-1633.

Advani, S.G., Processing and Properties of Nanocomposites, World

Lämmel, C., Schneider, M., Weiser, M., & Michaelis, A. (2013). Investigations of electrochemical double layer capacitor (EDLC) materials–a comparison of test methods. Materialwissenschaft und Werkstofftechnik, 44(7), 641-649.

Yang, H. (2018, September). A revisit to supercapacitor capacitance measurement method 1A of IEC 62391-1. In 2018 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 2478-2482). IEEE

Chodankar, N. R., Pham, H. D., Nanjundan, A. K., Fernando, J. F., Jayaramulu, K., Golberg, D., ... & Dubal, D. P. (2020). True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small, 16(37), 2002806.

Choudhary, N., Li, C., Moore, J., Nagaiah, N., Zhai, L., Jung, Y., & Thomas, J. (2017). Asymmetric supercapacitor electrodes and devices. Advanced Materials, 29(21), 1605336.

Rahmanifar, M. S., Hemmati, M., Noori, A., El- Kady, M. F., Mousavi, M. F., & Kaner, R. B. (2019). Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Materials Today Energy, 12, 26-36.

R Farma, M Deraman, Awitdrus, I A Talib, R Omar, J G Manjunatha, M M Ishak, N H Basri and B N M Dolah, “Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon” Int. J. Electrochem. Sci., 8(2013) 257 – 258.

De Barros, R.A.; Martins, C.R.; de Azevedo, W. M. Writing with conducting polymer. Synth. Met. 2005, 155, 35–38. [CrossRef] Wallace, G.G.; Spinks, G.M.; Teasdale, P.R. Conductive Electroactive Polymers: Intelligent Materials Systems; Freund, M.S., and Deore B., Self-Doped Conducting Polymers,

Guo, T., Zhang, C., Zhao, J., Ma, C., Li, S., & Li, W. (2019). Evaluation of polypyrrole- modified bioelectrodes in a chemical absorption- bioelectrochemical reduction integrated system for NO removal. Scientific reports, 9(1), 1-11.

Snook, G. A., Wilson, G. J., & Pandolfo A. G. (2009). Mathematical functions for optimisation of conducting polymer/activated carbon asymmetric supercapacitors. Journal of Power Sources, 186(1), 216-223.

Pineiro-Prado, I., Salinas-Torres, D., Ruiz-Rosas, R., Morallon, E., & Cazorla-Amoros, D. (2016). Design of activated carbon/activated carbon asymmetric capacitors. Frontiers in Materials, 3, 16

P Ribeiro, B Johonson, M Crow, A Arsoy, Y Liu, “Energy storage systems for advanced power applications”, Proceedings of the IEEE, 12 (2001), 1744-1756.

Skotheim, T.; Elsenbaumer, R.L.; Reynolds, J.R. Handbook of Conducting Polymers; Marcel Dekker:


Refbacks

  • There are currently no refbacks.