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Abstract 
This paper introduces the use of Stockwell transform (ST) for spectral analysis of heart rate 

variability (HRV) signals in time-frequency domain. The ST is depicted numerically and 

compared with well-liked method of wavelet transform known as continuous Morlet wavelet 

transform (CMWT). The results of this study show that the normalized mean power and total 

normalized power in VLF (0.004–0.04 Hz), LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) were 

improved compared to CMWT for statistical significance value of p=0.00016 and 

P<0.00001. For this analysis, electrocardiogram (ECG) was recorded in fifteen normal 

subjects (mean age approximate 28, range 23–34 years and mean height approximate 

162 cm) in supine position for twenty minutes. 
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INTRODUCTION 
The time-frequency analysis of the heart 

rate variability (HRV) has been used as a 

non-invasive tool to explain the several 

mechanisms of the autonomic nervous 

system (ANS) modulation on heart rate. 

From electrocardiogram (ECG) records, in 

which R-R intervals are measured, beat to 

beat variation of R-R interval is known as 

heart rate variability. It is feasible to obtain 

information about how power of the HRV 

is distributed across frequency and time. 

HRV spectrum can be divided into three 

main frequency bands: a high frequency 

(HF) band (0.15 to 0.4 Hz), low frequency 

(LF) band (0.04 to 0.15 Hz) and very low 

frequency (VLF) band (0.004 to 0.04 Hz). 

High frequency heart rate oscillations are 

associated with respiratory sinus 

arrhythmia and reflect parasympathetic 

activity. Low frequency heart rate 

oscillations are considered to be modulated 

by combined sympathetic and 

parasympathetic activity. VLF band which 

may reflect the influence of several 

physiological mechanisms, including the 

rennin-angiotensin system, vasomotor tone 

and thermoregulation on heart beats.
[1–4]

 

The time-frequency power spectral 

indexes extracted from the R–R interval 

time series provides information related to 

the autonomic neural cardiovascular 

control. In many clinical situations such as 

diabetes
[5–8]

 hypertension
[9]

 heart 

failure
[10,11]

 and heart disease
[12,13] 

spectral 

indexes can be changed. Thus, reduced 

HRV is a notable to predict of cardiac 

event including sudden death in coronary 

artery disease,
[14]

 heart failure
[15]

 and 

following myocardial infarction. Therefore 
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HRV has been increasingly used as a 

predictive index as well to monitor 

treatment results in several diseases 

affecting the interaction between the 

autonomic nervous system and heart rate 

control.
[16]

 

 

HRV is analyzed in the frequency domain 

the power spectrum of HRV does not show 

its temporal changes.
[17]

 There are many 

physiological situations of interest where 

heart rate changes rapidly over time and 

the monitoring of these temporal changes 

may be very important.
[18]

 HRV signals are 

characterized by time-varying signal 

properties i.e. from the statistical 

perspective they are non-stationary. 

Therefore time-variant signal processing 

methods are part of the standard 

assortment in biomedical signal analysis. 

Both the frequency of occurrence as well 

as the shape and time-frequency 

characteristics of transient signal 

components have a high diagnostic 

value
[19,20]

 leading to more frequently 

applications of time-variant analysis 

methods. Signal components with time-

variant properties in HRV may occur at 

different frequencies. The time-frequency 

analysis is performed on the HRV data to 

show vagal tone and the sympatho-vagal 

balance as a function of time.
[21,22]

 

 

The best-known and most frequently 

applied techniques for the time-frequency 

analysis of HRV are the short-time Fourier 

transform (STFT) or Gabor transform 

(GT), the continuous Morlet wavelet 

transform (CMWT),
[23]

 and the Smoothed 

Pseudo Wigner-Ville (WV). The STFT 

cannot track the signal dynamics properly 

for non-stationary signal due to the 

limitations of fixed window width and also 

posse’s poor frequency resolution. The 

WV method used analytical signal (Hilbert 

transform) for process of HRV,
[24]

 which 

has smoothen the power spectral but with 

poor time-frequency power resolution due 

to cross terms in the spectrogram.
[25]

 

 

CWT is better method compared to all the 

above methods for time-frequency analysis 

as its window width is variable by scaling. 

Therefore this method analysis is 

computationally efficient for non-

stationary signal and produces reasonable 

result for large class of signal 

processing.
[26]

 In spite of this 

compensation, there are several inherent 

performance restrictions of the CWT 

approach like, CWT normally employs an 

octave scaling for frequencies, which 

results in an oversampled representation at 

the low frequencies and an under sampled 

representation at the higher frequencies.
[27]

 

However, wavelet has its own drawback 

that their analysis results depend on the 

choice of the mother wavelet base 

function. This may lead to a one-sided and 

a prior hypothesis on the characteristics of 

the signal. As a consequence, only the 

signal characteristics that correlate well 

with the shape of the wavelet base function 

have a chance to produce high value 

coefficients.
[28]

 Any other characteristics 

will be masked or completely ignored. 

Therefore it is not having high time-

frequency power and resolution in each 

frequency band (VLF, LF and HF) of 

HRV signals.  

 

MATERIALS AND METHODS 

Subjects 
For this analysis we have to use 15 healthy 

subjects, mean age approximate 28, 

ranging from 23–34 years and mean height 

of approximately 162 cm. The subjects 

were asked to avoid consumption of 

coffee, tea and cigarettes one hour before 

the recording. We have taken the clinical 

information allied with each record of the 

database in order to select a uniform group 

of records to be analyzed. None of them 

was suffering from diabetes and heart 

disease. An ECG was continuously 

recorded for 20 min of each subject in the 

relaxed supine position in a room free 

from any kind of disturbance with 

controlled temperature (22–25
o
C). All 

ECG measurements were taken at the 
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Data Acquisition and Pre-Processing 

The recording of ECG was done at the 

sampling rate of 500 Hz with BIOPAC 

(MP150) in corporation with 

Acknowledge software. Initially the D.C. 

drift of ECG signal was removed and after 

that the ECG signal is passed through a 

chebyshev type-2 low pass filter having a 

cut-off frequency of 15 Hz (Normalized 

frequency 0.03) to remove unwanted high 

frequency components which are present 

in ECG signals. Then it is passed through a 

chebyshev type-1 high pass filter with a 

cut-off frequency of 5 Hz (Normalized 

frequency 0.01) to remove the so called 

baseline wander.
[29]

 A Notch filter with a 

cut-off frequency of 50 Hz is used to 

remove power-line interference noise. The 

R peaks of the ECG signal were detected 

using Tompkins’s algorithm and get R-R 

interval.
[30,31]

 HRV analysis were carried 

out in time-frequency domains using 

MATLAB version R2012a (7.14.0.739) by 

using m-file of signal processing and 

wavelet tool box of the Matlab.  

 

Pre-processing of IBI time series data is 

necessarily required before analysis of 

HRV signal to reduce error and enhance 

the sensitivity of time series data. First we 

have done ectopic beat or interval 

detection and correction, de-trending and 

resampling type of pre-processing before 

HRV analysis. In this paper, the ectopic 

beats were detected on the basis of stander 

deviation filter method which marks 

outliers as being intervals that lie outside 

the overall mean IBI by a user defined 

value of standard deviation.
[18,32]

 The user 

defined value was used as three times of 

standard deviation. To remove such type 

of beats a qubic spline interpolation 

method was used. After replacing R-R 

intervals (second), now it is known as 

normal to normal intervals (NN intervals). 

The NN intervals were de-trended using 

linear method to remove low frequency 

and the mean of NN intervals were 

subtracted from NN intervals measure in 

order to remove trend.
[33]

 The NN intervals 

were resampled at 4 Hz using qubic spline 

method and the results are shown in 

Figures 1(a)–(c).  
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Fig. 1a. Typical Plots of R-R Interval Overtime. 
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Fig. 1b. Typical Plots of R-R Interval With Ectopic Beat Overtime. 
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Fig. 1c. Typical Plots of NN Interval after Replaced and De-trend Value of R-R Interval 

Overtime. 

 

Stockwell Transform 

The ST was proposed by Stockwell et 

al.
[34–36]

 The ST entirely refers to about the 

local information and frequency dependent 

resolution of time-frequency domain. The 

ST is capricious window of short time 

Fourier Transform (STFT) or addition of 

wavelet transform. It is based on a scalable 

Gaussian window and depends on 

frequency resolution. The STFT of signal 
( )h t  is defined as in Eq. (1) and it is basic 

equation for derivation of ST, in which the 

variable parameters τ and f denote the time 

of spectral localization and Fourier 

frequency respectively and ( )g t  represent 

the window function. The ST can originate 

from the above equation by replacing the 

window function ( )g t  
with Gaussian 

function and define as in Eq. (2). 

 
2

( , ) ( ) ( ) (1)
j ft

STFT f h t g t e dt


 
 

 
  

2 2( )
| | 22( , ) ( ) (2)

2

t f
f j ft

Cofficient S f h t e e dt








 

  
  

 

Coefficient is a la-by-lx matrix, where la is 

the length of scales and lx is the length of 

the input ( )h t and coefficient is a complex 

matrix.  

 

Scalogram 
The scalogram is the absolute value and 

square of the output of the ST as in 

Eq. (3). The meaning of scalogram is the 

ST energy density function which is the 
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contribution to the signal energy at the 

specific scale parameter 1/f and location 

parameter  . It is analogous to the 

spectrogram the energy density surface of 

the STFT. The scalogram (SC) represents 

the percentage of energy for each 

coefficient and is defined as in Eq. (4).  

 
2 2( )

| | 22 22| ( , ) | | ( ) |
2

t f
f j ft

S C S f h t e e dt








 

  
 (3) 

( , )

% 100

( , )

1 1

S C f
i j

of energy

S C
la lx

f
i j

j i





 

 

        (4) 

Algorithm to calculate normalized power 

with respect to time: 

 Calculate the power as S=abs 

(coefficient*coefficient). 

 Find the location of calculated power 

being range of frequency (f) use Mat 

command ‘find’ example: for VLF find 

((f>=0.003) and (f<0.04)). 

 Find the sum of power corresponding 

to location of frequency with respect to 

time example: VLF 

Power=Sum(S(location:)). 

 Normalized power w.r.t. time=VLF 

Power/Max (VLF Power). 

 Total normalized power=Sum 

(normalized power w.r.t. time). 

 

RESULTS 
The bar chart of normalized mean power 

of VLF, LF and HF are shown in 

Figures 2(a)–(c) for fifteen normal subjects 

and evidently indicate that ST method is 

better compared to the CMWT method.  

 

 
Fig. 2a. Typical Bar Chart Comparison Plots of CMWT and ST Method for Normalized 

Mean Power of HF. 
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Fig. 2b. Typical Bar Chart Comparison Plots of CMWT and ST Method for Normalized 

Mean Power of LF. 

 
Fig. 2c. Typical Bar Chart Comparison Plots of CMWT and ST Method for Normalized Mean 

Power of VLF. 

 

Figures 3(a)–(d) demonstrate the 3-D and 

contour plot of scalogram of the ST and 

CMWT. Where scalogram of ST has 

sufficient power resolution of LF and VLF 

components of each sample time series 

HRV signal but optimal frequency 

resolution for HF components of HRV 

signal compare to CMWT. The results are 

reported in Table 1, which show the 

improvement of mean normalized power 

in frequency range like VLF (0.004 to 

0.04 Hz), LF (0.04 to 0.15 Hz) and HF 

(0.15 to 0.4 Hz) compare to CMWT 

method. The results show the mean 

normalized power improved compared to 

CMWT transform and correspond the 

subsequent statistical significance was 

measured using Student’s t-test one tailed 

and unequal variance. 

 

 
Fig. 3a. 3-D Plot of HRV Signal of 

CMWT. 
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Fig. 3b. 3-D Plot of HRV Signal of ST. 

 

 
Fig. 3c. Scalogram Contour Plot of HRV 

Signal of CMWT. 
 

 
 

 
 

 

 
Fig. 3d. Scalogram Contour Plot of HRV Signal of ST. 

 

The results are reported in Table 2, which 

show that improvement of total power 

resolution in frequency range like VLF, LF 

and HF compared to CMWT method. The 

results listed in Table 2 suggest, the 

average of total power improved compared 

to CMWT transform and correspondingly 

the subsequent statistical significance was 

measured using Student’s t-test one tailed 

and unequal variance. 

 

Table 1. Mean ± SD of Power of being Frequency Range of HRV Signals for 15 Subjects 

Corresponding P-Value Using Student’s t-Test (One-Tailed and Unequal Variance). 
Mean Norm. Power VLF (Mean ± SD) Mean Norm. Power 

LF (Mean ± SD) 

Mean Norm. Power 

HF (Mean ± SD) 

CMWT ST CMWT ST CMWT ST 

0.26209±0.06484 0.3843±0.09334 0.10869±0.02837 0.19033±0.0417 0.07698±0.02466 0.16751±0.05398 

p=0.00016 P<0.00001 P<0.00001 
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Table 2. Mean ± SD of Total Power (**Sum of Each Normalized Coefficient of Power) of 

Being Frequency Range of HRV Signals for Fifteen Subjects Corresponding P-Value Using 

Student’s t-test (One-Tailed and Unequal Variance). 
Total Power 

 VLF (Mean±SD) 

Total Power 

LF (Mean±SD) 

Total Power 

HF (Mean±SD) 

CMWT ST CMWT ST CMWT ST 

606.42759±143.45336 883.26±182.795 254.32431±73.71199 444.04±107.33 177.45062±52.57516 387.64±122.726 

P<0.00001 P<0.00001 P<0.00001 

 

 
Fig. 4. Bar Chart Represents the Comparative (Mean ± SD) Value of Total Power in 

Frequency Range (VLF, LF and HF) of HRV Signals. 
 

 

 
 

 
 

 

DISCUSSION 
There are various signal processing tools 

to measure important information from 

HRV signals but for correct analysis the 

results should be analyzed properly.
[37,38]

 

In general, these signal processing tools 

can be divided in linear and nonlinear 

techniques. The linear group is subdivided 

into time domain, frequency domain 

analysis and time-frequency domain. The 

nonlinear techniques are based on chaos 

theory. Artifacts and outliers affect the 

sensitivity and specificity of the time 

domain methods.
[39]

 Furthermore, it is 

probable that, one can have different R-R 

beat (HRV) signals with identical means 

and standard deviations.
[40,41]

 Hence, time 

domain analysis is not practical to analyze 

the nonlinear and non-stationary as HRV 

signals. However HRV analysis in the 

frequency domain considered that the 

HRV signals are stationary and periodic. 

But, this assumption is not suitable for the 

HRV signals especially in case of long 

ECG recordings which show clear signs of 

nonlinearity. In analysis of HRV and 

multi-component signals, the time-

frequency techniques are suitable signal 

processing tools to understand and analyze 

situation where the power content of HRV 

signals is changing with respect to time 

and frequency. 

 

The normalization of the ST is a vital 

distinction from the wavelet approach. The 

unit area localizing function (the Gaussian) 

preserves the HRV power spectral 

response of the ST and ensures that the 

power spectral response of the ST is 

invariant to the frequency. The mean total 

power spectral is improved for all three of 

the components of HRV signals like VLF, 

LF and HF which is equal to 1.5, 1.74 and 

2.18 times as compared to CMWT as 

shown in Table 2 and Figure 4 for 

statistical significance of (p<0.00001). The 
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ST returns the correct time frequency 

power spectral for all three components, 

shown in Figures 3(a)–(c) compared to 

CMWT time-frequency power spectral. In 

case of CMWT, the power spectrum is 

large for the lower frequencies, and 

diminishes as the frequency increases. 

This is due to the normalization of the 

wavelet transform but it does not happen 

in ST. This is because the ST combines 

frequency invariant amplitude, and 

absolutely phase properties and no side 

lobes in a Gaussian function of all these 

characteristics.
[42]

 It is clear from our 

observation that all components of HRV 

are present and no attenuation of power in 

high frequency like CMWT method. 

 

CONCLUSION 
In this paper, we have applied concept of 

ST to enhance the power concentration of 

VLF, LF and HF of HRV signals in the 

time-frequency domain. The results have 

shown that the ST can significantly 

enhance the power of three frequency 

bands of HRV signals without attenuation 

of power of high frequency.  

 

The improvement was observed for total 

mean power in VLF 1.5 times, LF 1.74 

times and HF 2.18 times compared to 

CMWT method. The total mean power 

was generated from HRV signals and 

provides information related to the neural 

cardiovascular control and used full to 

clinical applications to predict accurate 

spectral power index altered of subjects 

suffering with ailments such as diabetes, 

hypertension, heart failure and heart 

disease. 
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