Open Access Open Access  Restricted Access Subscription or Fee Access

Laser-induced Phosphorescence Photobleaching Anemometer for Microfluidic Technology Instruments

Upasana Sinha, Sarvya Gujjar

Abstract


In this article, we have established a new, non-intrusive flow velocity calculation approach focused on photobleaching of a fluorescent dye for micro-fluidic systems. The time of existence of the fluorescent dye in the laser beam depends on the flow rate which roughly relates to the time of decay of the photobleaching of the dye in the laser beam. The time of residency is inversely proportional to the speed of flow. The fluorescence amplitude rises with the flow rate owing to the reduction in the time of residence. The calibration curve between the amplitude of the fluorescence and the known flow velocity should be obtained first. The calibration relationship is being used to determine the flow velocity explicitly from the fluorescence emission signal calculated. The latest system can calculate speed very easily and is simple to use. It is illustrated with both the pressure-driven flow and the electroosmotic flow.


Keywords: Anemometer, calibration process, electroosmotic flow, FRAP microfluidic technology, LIFPA


Full Text:

PDF

References


Singh MK, Kang TG, Meijer HEH, Anderson PD. The mapping method as a toolbox to analyze, design, and optimize micromixers. Microfluid Nanofluid. 2008;5(3):313–25. doi: 10.1007/s10404–007–0251–7.

Nam-Trung N, Zhigang W. Micromixers review. J Micromech Microeng. 2005;15(2):R1.

Nguyen N-T, Wu Z. Micromixers—a review. J Micromech Microeng. 2005;15(2):R1-R16. doi: 10.1088/0960–1317/15/2/R01.

Hessel V, Löwe H, Schönfeld F. Micromixers—a review on passive and active mixing principles. Chem Eng Sci. 2005;60(8–9):2479–501. doi: 10.1016/j.ces.2004.11.033.

Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R. Ultrasonic micromixer for microfluidic systems. Sens Actuators A. 2001;93(3):266–72. doi: 10.1016/S0924–4247(01)00654–9.

Bockhorn H, et al. Theoretical and experimental investigations of convective micromixers and microreactors for chemical reactions. In: Mixing D, Mewes, Mayinger F, editors Micro and macro. Berlin,

Heidelberg: Springer; 2010. p. 325–46.

Gradl J, Peukert W. Characterization of micro mixing for precipitation of nanoparticles in a T-mixer. In: Mixing D, Mewes, Mayinger F, editors Micro and macro. Berlin, Heidelberg: Springer; 2010. p. 105–24.

Chen C-H, Lin H, Lele SK, Santiago JG. Convective and absolute electrokinetic instability with conductivity gradients. J Fluid Mech. 2005;524:263–303. doi: 10.1017/S0022112004002381 (-. Convective and absolute electrokinetic instability with conductivity gradients. J Fluid Mech. 2005;524:263–303. doi: 10.1017/S0022112004002381).

Wang SC, Wei HH, Chen HP, Tsai MH, Yu CC, Chang HC. Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes. Biomicrofluidics. 2008;2(1):14102. doi: 10.1063/1.2904640, PMID 19693364.

Wang SC, Chen HP, Lee CY, Yu CC, Chang HC. AC electro-osmotic mixing induced by non-contact external electrodes. Biosens Bioelectron. 2006;22(4):563–7. doi: 10.1016/j.bios.2006.05.032, PMID 16837182.

Wang S-C, Lai Y, Ben Y, Chang H. Microfluidic Mixing by dc and ac Nonlinear Electrokinetic Vortex Flows. Ind Eng Chem Res. 2004;43(12):2902–11. doi: 10.1021/ie030689r.

Yossifon G, Chang HC. Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability. Phys Rev Lett. 2008;101(25):254501. doi: 10.1103/PhysRevLett.101.254501, PMID 19113713.

Nguyen NT, Wu Z. Micromixers – a review. J Micromechnics Microeng. 2005;15:r1-r16.

Chang C-C, Yang R-J. Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid. 2007;3(5):501–25. doi: 10.1007/s10404–007–0178-z.

Kamholz AE, Weigl BH, Finlayson BA, Yager P. Quantitative analysis of Molecular Interaction in a Microfluidic Channel and nbsp; the T-Sensor. Anal Chem. 1999;71(23):5340–7. doi: 10.1021/ac990504j, PMID 10596213.

Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G, Stone HA. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett. 2000;76(17):2376–8. doi: 10.1063/1.126351.

Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science. 2002;295(5555):647–51. doi: 10.1126/science.1066238, PMID 11809963.

Stroock AD, et al. Erratum: patterning electro-osmotic flow with patterned surface charge [Phys. Rev. Lett. 84, 3314. Phys Rev Lett. 2000];86(26):6050-.

Erickson D, Li D. Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir. 2002;18(5):1883–92. doi: 10.1021/la015646z.

Oddy MH, Santiago JG, Mikkelsen JC. Electrokinetic instability micromixing. Anal Chem. 2001;73(24):5822–32. doi: 10.1021/ac0155411, PMID 11791550.

Lin H, Storey BD, Oddy MH, Chen C, Santiago JG. Instability of electrokinetic microchannel flows

with conductivity gradients. Phys Fluids. 2004;16(6):1922–35. doi: 10.1063/1.1710898.

Mao H, Yang T, Cremer PS. A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J Am Chem Soc. 2002;124(16):4432–5. doi: 10.1021/ja017625x, PMID 11960472.

Deshmukh AA, Liepmann D, Pisano AP. Characterization of a micromixing, pumping, and valving system. Proceedings of the in transducers’01, 11th international conference on Solid-State Sensors and Actuators. 2001. Munich, Germany.

Glasgow I, Aubry N. Enhancement of microfluidic mixing using time pulsing. Lab Chip. 2003;3(2):114–20. doi: 10.1039/b302569a, PMID 15100792.

Deval J, Tabeling P, Ho CM. A dielectrophoretic chaotic mixer. Proceedings of the in MEMS’02, 15th IEEE international Workshop Micro Electromechanical System. 2000. Las Vegas.

Bau HH, Zhong J, Yi M. A minute magneto hydrodynamic (MHD). Mixer. Sens Actuators B. 2001;79(2–3):207–15. doi: 10.1016/S0925–4005(01)00851–6.

Liu RH, Yang J, Pindera MZ, Athavale M, Grodzinski P. Bubble-induced acoustic micromixing. Lab Chip. 2002;2(3):151–7. doi: 10.1039/b201952c, PMID 15100826.

Joanne D, Patrick T, Chih-Ming H. A dielectrophoretic chaotic mixer. In: Las Vegas NV Micro electro mechanical systems. USA; 2002. The Fifteenth IEEE International Conference on2002. p. 36–9.

Dodge A, Hountondji A, Jullien MC, Tabeling P. Spatiotemporal resonances in a microfluidic system. Phys Rev E. 2005;72(5 Pt 2):056312. doi: 10.1103/PhysRevE.72.056312, PMID 16383750.

Biddiss E, Erickson D, Li D. Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem. 2004;76(11):3208–13. doi: 10.1021/ac035451r, PMID 15167803.

Coleman JT, McKechnie J, Sinton D. High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion. Lab Chip. 2006;6(8):1033–9. doi: 10.1039/b602085b, PMID 16874374.

Feng JJ, Krishnamoorthy S, Sundaram S. Numerical analysis of mixing by electrothermal induced flow in microfluidic systems. Biomicrofluidics. 2007;1(2):24102. doi: 10.1063/1.2734910, PMID 19693379.

El Moctar AOE, Aubry N, Batton J. Electro-hydrodynamic micro-fluidic mixer. Lab Chip. 2003;3(4):273–80.

doi: 10.1039/b306868b, PMID 15007458.

Ramos A, Morgan H, Green NG, Castellanos A. Ac electrokinetics: a review of forces in microelectrode structures. J Phys D: Appl Phys. 1998;31(18):2338–53. doi: 10.1088/0022–3727/31/18/021.

Griffiths SK, Nilson RH. Band spreading in two-dimensional microchannel turns for electrokinetic species transport. Anal Chem. 2000;72(21):5473–82. doi: 10.1021/ac000595g, PMID 11080903.

Groisman A, Steinberg V. Elastic turbulence in a polymer solution flow. Nature. 2000;405(6782):53–5. doi: 10.1038/35011019, PMID 10811214.

Janasek D, Franzke J, Manz A. Scaling and the design of miniaturized chemical-analysis systems. Nature. 2006;442(7101):374–80. doi: 10.1038/nature05059, PMID 16871204.


Refbacks

  • There are currently no refbacks.