Open Access Open Access  Restricted Access Subscription or Fee Access

Wireless CMOS VCOs and Designed Integrated Antennas

Sachin Kumar

Abstract


This article depicts ongoing exercises in the territory of RF coordinated circuits and most recent advances
on millimetre-wave CMOS voltage-controlled oscillators (VCOs). Low force and low stage commotion LC-
VCO and ring oscillator plans are dissected and talked about. Structure and execution drifts throughout the
most recent decade are given and discussed. First, handset models created for cell and cordless phone
gauges are introduced. Next, the decision of gadget innovation is examined, and the plan of building
squares, for example, Millimetre-Wave CMOS Oscillators, CMOS RF Transmitters with On-Chip Antenna,
low-noise enhancers and blenders, oscillators, and force intensifiers is depicted. Last, a portion of the
developing utilizations of RF circuits and their suggestions for the plan are thought of.
Keywords: Antenna, CMOS, Oscillators, Transmitters, Transceiver, VCO.


Full Text:

PDF

References


References:

Kim, K.; Floyd, B.A.; Mehta, J.L.; Yoon, H.; Hung, C.M.; Bravo, D.; Dickson, T.O.; Guo, X.; Li, R.;

Trichy, N.; et al. On-chip antennas in silicon ICs and their application. IEEE Trans. Electron. Devices

, 52, 1312–1323. [CrossRef]

Zhang, Y.P.; Liu, D. Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated

Millimetre-Wave Devices for Wireless Communications. IEEE Trans. Antennas Propag. 2009, 57,

–2841. [CrossRef]

Cao, C.; Ding, Y.; Yang, X.; Lin, J.-J.; Wu, H.-T.; Verma, A.K.; Lin, J.; Martin, F. A 24-GHz Transmitter

With On-Chip Dipole Antenna in 0.13-μm CMOS. IEEE J. Solid-State Circuits 2008, 43, 1394–1402.

[CrossRef]

Cao, Z.; Ma, Q.; Smolders, A.B.; Jiao, Y.; Wale, M.J.; Oh, C.W.; Wu, H.; Koonen, A.M.J. Advanced

integration techniques on broadband millimetre-wave beam steering for 5G wireless networks and

beyond. IEEE J. Quantum Electron. 2016, 52. [CrossRef]

Kim, K.; Floyd, B.; Mehta, J.; Yoon, H.-S.; Hung, C.-M.; Bravo, D.; Dickson, T.; Guo, X.; Li, R.; Trichy,

N.; et al. The feasibility of on-chip interconnection using antennas. In Proceedings of the 2005

IEEE/ACM International Conference on Computer-Aided Design (ICCAD’05), San Jose, CA, USA, 6–10

November 2005; pp. 979–984.

Kim, K.; Yoon, H. On-chip wireless interconnection with integrated antennas. In Proceedings of the

International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San

Francisco, CA, USA, 10–13 December 2000; pp. 485–488.

Floyd, B.A.; Hung, C.M. Intra-chip wireless interconnect for clock distribution implemented with

integrated antennas, receivers, and transmitters. IEEE J. Solid-State Circuits 2002, 37, 543–552.

[CrossRef]

Merenda, M.; Felini, C.; Della Corte, F.G. A Monolithic Multisensor Microchip with Complete On-Chip

RF Front-End. Sensors 2018, 18, 110. [CrossRef]

Popplewell, P.; Karam, V.; Shamim, A.; Rogers, J.; Roy, L.; Plett, C. A 5.2-GHz BFSK Transceiver

Using Injection-Locking and an On-Chip Antenna. IEEE J. Solid-State Circuits 2008, 43, 981–990.

[CrossRef]

Zito, F.; Aquilino, F.; Fragomeni, L.; Merenda, M.; Della Corte, F.G. CMOS wireless temperature sensor

with integrated radiating element. Sens. Actuators A Phys. 2010, 158, 169–175. [CrossRef]

Kulkarni, V.V.; Muqsith, M.; Niitsu, K.; Ishikuro, H.; Kuroda, T. A 750 Mb/s, 12 pJ/b, 6-to-10 GHz CMOS

IR-UWB Transmitter With Embedded On-Chip Antenna. IEEE J. Solid-State Circuits 2009, 44,

–403. [CrossRef]

Song, Y.; Xu, Q.; Yang, J.; Wu, Y.; Kang, K.; Tian, Y.; Tang, X. An On-Chip Frequency-Reconfigurable

Antenna For Q-Band Broadband Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16,

–2235. [CrossRef]

Hedayati, M.K.; Abdipour, A.; Shirazi, R.S.; Ammann, M.J.; John, M.; Cetintepe, C.; Staszewski, R.B.;

Sarraf, R. Challenges in On-Chip Antenna Design and Integration With RF Receiver Front-End Circuitry

in Nanoscale CMOS for 5G Communication Systems. IEEE Access 2019, 7, 43190–43204. [CrossRef]

Khan, D.; Abbasizadeh, H.; Kim, S.-Y.; Khan, Z.H.N.; Shah, S.A.A.; Pu, Y.G.; Hwang, K.C.; Yang, Y.;

Lee, M.; Lee, K.-Y. A Design of Ambient RF Energy Harvester with Sensitivity of −21 dBm and Power

Efficiency of a 39.3% Using Internal Threshold Voltage Compensation. Energies 2018, 11, 1258.

[CrossRef]

Della Corte, F.G.; Merenda, M.; Bellizzi, G.G.; Isernia, T.; Carotenuto, R. Temperature Effects on the

Efficiency of Dickson Charge Pumps for Radio Frequency Energy Harvesting. IEEE Access 2018, 6,

–65736. [CrossRef]

Chee, Y.H.; Niknejad, A.M.; Rabaey, J. An ultra-low power injection locked transmitter for wireless

sensor networks. IEEE J. Solid-State Circuits 2006, 41, 1740–1748. [CrossRef]

Cho, S.; Chadrakasan, A. A 6.5-GHz energy-efficient BFSK modulator for wireless sensor applications.

IEEE J. Solid-State Circuits 2004, 39, 731–739.

Burasa, P.; Djerafi, T.; Constantin, N.G.; Wu, K. On-Chip Dual-Band Rectangular Slot Antenna for

Single-Chip Millimetre-Wave Identification Tag in Standard CMOS Technology. IEEE Trans. Antennas

Propag. 2017, 65, 3858–3868. [CrossRef]

Jahan, M.S.; Langford, J.; Holleman, J. A low-power FSK/OOK transmitter for 915 MHz ISM band. In

Proceedings of the 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ,

USA, 17–19 May 2015; pp. 163–166.

Razavi, B. Design of Analog CMOS Integrated Circuits; McGraw Hill: New York, NY, USA, 2005.

Hajimiri, A.; Limotyrakis, S.; Lee, T.H. Jitter and phase noise in ring oscillators. IEEE J. Solid-State

Circuits 1999, 34, 790–804. [CrossRef]

Jia, L.; Ma, J.-G.; Yeo, K.; Do, M. 9.3–10.4-GHz-Band Cross-Coupled Complementary Oscillator With

Low Phase-Noise Performance. IEEE Trans. Microw. Theory Tech. 2004, 52, 1273–1278. [CrossRef]

Bunch, R.; Raman, S. A 0.35 μm CMOS 2.5 GHz complementary-GM VCO using PMOS inversion

mode varactors. In Proceedings of the IEEE Radio Frequency Integrated Circuits RFIC Symposium,

Phoenix, AZ, USA, 20–22 May 2001; pp. 49–52.

Sun, L.; Kwasniewski, T. A 1.25-GHz 0.35-μm monolithic CMOS PLL based on a multiphase ring

oscillator. IEEE J. Solid-State Circuits 2001, 36, 910–916.

Zhao, X.; Chebli, R.; Sawan, M. A wide tuning range voltage-controlled ring oscillator dedicated to

ultrasound transmitter. In Proceedings of the 16th International Conference on Microelectronics (ICM

, Tunis, Tunisia, 6–8 December 2004; pp. 313–316. [CrossRef]

Bansal, R. Antenna theory; analysis and design. Proc. IEEE 1984, 72, 989–990. [CrossRef]

Lin, J.-J.; Wu, H.-T.; Su, Y.; Gao, L.; Sugavanam, A.; Brewer, J.E. Communication Using Antennas

Fabricated in Silicon Integrated Circuits. IEEE J. Solid-State Circuits 2007, 42, 1678–1687.

Kim, H.; Yoon, I.-J.; Yoon, Y.J. A novel fully integrated transmitter front-end with high power-added

efficiency.

J. Crols and M. Steyaert, "A Single-Chip 900 MHz CMOS Receiver Front End with a High-Performance

Low-IF Topology," I€€€ J. Solid-State Cir- cuits, vol. 30, Dec. 1995, pp. 1483-92.

C. D. Hu1L.J. L. Tham, and R. R. Chu, "A Direct-Conversion Receiver for 900 MHZ (ISM Band)

Spread-Spectrum Digital Cordless Telephone," I€€€ J. Solid-State,Circuits, vol. 31, Dec. 1996, pp.

-63.

A. Abidi e t al., "The! Future of CMOS Wireless Transceivers," ISSCC Dig. Tech. Papers, Feb. 1997,

pp. 118-19.

T. D. Stetzler et al., "A 2.7-4.5 V Single Chip GSM Transceiver RF Integrat- ed Circuit," /E€€J. Solid-

State Circuits, vol. 30, Dec. 1995, pp. 1421-29.

Marshall, et al., ,"2.7 V GSM Transceiver ICs with On-Chip Filtering," /SSCC Dig. Tech. Papers, Feb.

, pp. 148

A. Abidi, "Direct-Conversion Radio Transceivers for Digital Communi- cations,'' /€€€ J. Solid-State

Circuits, vol. 30, Dec. 1995, pp. 1399-141 0.

Razavi, "Design Considerations for Direct-Conversion Receivers," /FEE Trans. CircuitsandSystems 11,

vol. 44, June 1997, pp, 428-35.

[81S. Heinenet al., "A 2.7 V 2.5 GHz Bipolar Chipset for Digital Wireless Communication," lSSCC Dig.

Tech. Papers, Feb. 1997, pp, 306-7.

[91J. C. Rudell, et al., "A 1.9 GHz Wideband IF Double Conversion CMOS Integrated Receiver for

Cordless Telephone Applications," lSSCC Dig. Tech. Papers, Feb. 1997, pp. 304-5.

[IO] D. K. Weaver, "A Third Method of Generation and Detection of Single- Sideband Signals," Proc.

IRE, vol. 44, Dec. 1956, pp. 1703-5.

[I I ] B. Razavi, RF Microelectronics, New Jersey: Prentice Hall, 1998.

[I21 R. Schneiderman, "GaAs Continues to Gain in Wireless Applications,"

Wireless Sys. Design, Mar. 1997, pp. 14-1 6.

[I31 R. G. Meyer and W. D. Mack, "A 1-GHz BiCMOS RF Front-End Integrated Circuit," lE€EJ. Solid-

State Circuits, vol. 29, Mar. 1994, pp. 350-55.

J. R. Long and M. A. Copeland, "A 1.9GHz Low-Voltage Silicon Bipolar Receiver Front-End for Wireless

Personal Communication Systems," /€FE 1.Solid-State Circuits, vol. 30, Dec. 1995, pp. 143848.

D. K. Shaeffer and T. H. Lee, "A 1.5 V 1.5 GHz CMOS Low Noise Amplifier," VLSl Circuits Symp. Dig.

Tech. Papers, June 1996, pp. 32-33.

A. Rofougaran et al., "A 1 GHz CMOS RF Front End IC for a Direct Conversion Wireless Receiver,"

/€E€ 1.Solid-State Circuits, vol. 31, July 1996, pp. 880-89.

A. R. Shahani, D. K. Shaeffer, and T. H. Lee, "A 12 mW Wide Dynamic Range CMOS Front End For a

Portable GPS Receiver," lSSCC Dig. Tech. Papers, Feb. 1997, pp. 368-69.

B. Razavi, "A 900-MHz CMOS Direct-Conversion Receiver," VLSl Circuits Symp. Dig. Tech. Papers,

June 1997, pp. 113-14.

B. Razavi, "A Study of Phase Noise in CMOS Oscillators," /E€€ J. Solid- State Circuits, vol. 31, Mar.

, pp. 33143.

B. Jansen, K. Negus, and D. Lee, "Silicon Bipolar VCO Family for 1.I to 2.2 GHz with Fully-Integrated

Tank and Tuning Circuits," lSSCC Dig. Tech. Papers, Feb. 1997, pp. 392-93.

Rofouqaran et al., "A 900 MHz CMOS LC Oscillator with Quadrature Outputs,"-lSSCC Dig. Tech.

Papers, Feb. 1996, pp. 392-93.

B. Razavi, "A 1.8 GHz CMOS Voltage-Controlled Oscillator," lSSCC Dig. Tech. Papers, Feb. 1997, pp.

-89.

J.Craninckxetal., "A Fully Integrated Spiral-LCC MO SVCO Set with Prescaler for GSM and DCS1800

Systems," Proc. ClCC, May 1997, pp. 4 0 3 4 .

T. Sowlati, et al., "Low Voltage, High Efficiency GaAs Class E Power Amplifiers for Wireless

Transmitters," /E€€ 1. Solid-State Circuits, vol. 30, Oct. 1995, pp. 1074-80.

N. 0 . Sokal and A. D. Soka1,"Class E - A New Class of High-Efficiency Tuned Single-Ended Switching

Power Amplifiers," /€E€ J. Solid-State Circuits, vol. IO, June 1975, pp. 168-76.

D. Su and W. McFarland, "A 2.5-V I - W Monolithic CMOS RF Power Amplifier," Proc. ClCC, May 1997,

pp. 189-92.

R. 0. LaMaire et al., "Wireless LANs and Mobile Networking: Standards and Future Directions," /€E€

Commun. Mag., Aug. 1996, pp. 86-94.

ETSI TC-RES, "Radio Equipment and Systems (RES); High Performance Radio Local Area Network

(HIPERLAN); Functional Specification," Sophia Antipolis Cedex, France, July 1995.

P. McGoldrick, "Super Chip Is the First to Get the Cable Modem Down to Size," Electronic Design, pp.

-74, June 9, 1997.




DOI: https://doi.org/10.37628/ijaic.v6i1.1341

Refbacks

  • There are currently no refbacks.