Open Access Open Access  Restricted Access Subscription or Fee Access

Background of Gas Turbine Engines for Electric Power Generation Engine Controls

Upasana Sinha, Sarvya Gujjar

Abstract


This article pointed out the basic history of gas turbine engines for the generating electricity. The two primary engine forms, single and twin shafts, are presented followed by a study of the operational principles of the twin-shaft engine. The primary controllers used in conventional gas turbine engine models for power generation research have finally been established. In the production process, there is often a need to test electrical motor drives that are attached to mechanical loads that could exhibit non-linear behavior. This can be done by utilizing a strain gauge that is used as a programmable load simulator. In all of these prior implementations, test measures are being used to find significant engine or engine drives in various forms of dynamic loading. The real prime mover is then checked using an innovative load in the sense of the prime mover loading phase. The main focus of this paper is to know the actual load component of the positive claim loading phase. Explicitly, the load portion is a turbine and the prime mover is an implemented twin-shaft gas turbine generator

 


Full Text:

PDF

References


Rupp M. Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem. 2015;115(16):1058–73. doi: 10.1002/qua.24954.

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research. Chia Laguna resort Teh YW, Titterington M, editors. Vol. 9. Sardinia, Italy: PMLR; May 13–15 2010. p. 249–56.

Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B. 2005;67(2):301–20. doi: 10.1111/j.1467–9868.2005.00503.x.

Bo C, Maseras F, López N. The role of computational results databases in accelerating the discovery of catalysts. Nat Cat. 2018;1(11):809–10. doi: 10.1038/s41929–018–0176–4.

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc Lond A. Apr 2016;374(2065):20150202. doi: 10.1098/rsta.2015.0202, PMID 26953178.

Melkumova LE, Shatskikh SY. Comparing ridge and lasso estimators for data analysis. Procedia Eng. 2017;201:746–55. doi: 10.1016/j.proeng.2017.09.615.

Housecroft CE, Sharpe AG. Inorganic chemistry. Inorg Chem. 2008:31, 1013, 1014.

Ramakrishnan R, von Lilienfeld OA. Machine learning, quantum chemistry, and chemical space. Reviews in Computational Chemistry. 2017:225–56. doi: 10.1002/9781119356059.ch5.

Verleysen M, François D. The curse of dimensionality in data mining and time series prediction. Lecture Notes in Computer Science. 2005:758–70. doi: 10.1007/11494669_93.

Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA. Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett. Jan 2012;108(5):058301. doi: 10.1103/PhysRevLett.108.058301, PMID 22400967.

Hansen K, Biegler F, Ramakrishnan R, Pronobis W, von Lilienfeld OA, Müller KR, Tkatchenko A. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J Phys Chem Lett. 2015;6(12):2326–31. doi: 10.1021/acs.jpclett.5b00831, PMID 26113956.

Seeger M. Gaussian processes for machine learning. Int J Neural Syst. 2004;14(2):69–106. doi: 10.1142/S0129065704001899, PMID 15112367.

Walker EA, Mitchell D, Terejanu GA, Heyden A. Identifying active sites of the water-gas shift reaction over titania supported platinum catalysts under uncertainty. ACS Catal. 2018;8(5):3990–8. doi: 10.1021/acscatal.7b03531.

Walker E, Ammal SC, Terejanu GA, Heyden A. Uncertainty quantification framework applied to the water-gas shift reaction over pt-based catalysts. J Phys Chem C. 2016;120(19):10328–39 339. doi: 10.1021/acs.jpcc.6b01348, P. 10.

Lu J, Behtash S, Heyden A. Theoretical investigation of the reaction mechanism of the decarboxylation and decarbonylation of propanoic acid on pd(111) model surfaces. J Phys Chem C. 2012;116(27):14328–41 341. doi: 10.1021/jp301926t, P. 14.

Lu J, Faheem M, Behtash S, Heyden A. Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a ru(0001) model surface. J Cat. 2015;324:14–24. doi: 10.1016/j.jcat.2015.01.005.

Meredig B, Wolverton C. Dissolving the periodic table in cubic zirconia: data mining to discover chemical trends. Chem Mater. 2014;26(6):1985–91. doi: 10.1021/cm403727z.

Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M. Big data of materials science: critical role of the descriptor. Phys Rev Lett. Mar 2015;114(10):105503. doi: 10.1103/PhysRevLett.114.105503, PMID 25815947.

Lopez-Paz D, Sra S, Smola AJ, Ghahramani Z, Schölkopf B. Randomized nonlinear component analysis. In: Proceedings of the 31st international conference on Machine Learning. JMLR.org. Vol. 32, ser. ICML’14; 2014. p. II–1359–67.

Abdi H. Factor rotations in factor analyses. In: Encyclopedia of social science research methods. Thousand Oaks, CA: SAGE; 2003.

Szaleniec M, Witko M, Tadeusiewicz R, Goclon J. Application of artificial neural networks and dft-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase. J Comput Aid Mol Des. Mar 2006;20(3):145–57. doi: 10.1007/s10822–006–9042–6, PMID 16779618.

Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. Apr 2007;98(14):146401. doi: 10.1103/PhysRevLett.98.146401, PMID 17501293.

Pereira F, Xiao K, Latino DARS, Wu C, Zhang Q, Aires-de-Sousa J. Machine learning methods to predict density functional theory b3lyp energies of homo and lumo orbitals. J Chem Inf Model. 2017;57(1):11–21. doi: 10.1021/acs.jcim.6b00340, pMID 28033004.

Rupp M, Ramakrishnan R, von Lilienfeld OA. Machine learning for quantum mechanical properties of atoms in molecules. J Phys Chem Lett. 2015;6(16):3309–13. doi: 10.1021/acs.jpclett.5b01456.


Refbacks

  • There are currently no refbacks.