Open Access Open Access  Restricted Access Subscription or Fee Access

Augmentation in Parameters of S Band Microstrip patch Antenna using Metamaterial with Varactor Diode

juhi shinde, Bimal Garg

Abstract


In this paper S band rectangular microstrip patch antenna is designed and its parameters like return loss, band width, VSWR, directivity, radiation efficiency and size reduction are analysed. Then a metamaterial structure of “Split rectangular Rings” with thin wire strip is designed such that it exhibits negative permittivity and negative permeability at the same frequency as that of inset fed rectangular microstrip patch antenna. Here “Nicolson ross wear” (NRW) parameters are used to verify negative permittivity and permeability. This structure is then superimposed on the microstrip patch antenna. Then a varactor diode as active device is incorporated to the metamaterial structure and again parameters are analyzed like return loss, bandwidth, VSWR, directivity, radiation efficiency are further improved. All simulation results are analysed using Computer simulation technology (CST) microwave studio software.

Full Text:

PDF

References


V.G. Veselago. The electrodynamics of substances with simultaneously negative value ε and µ, Sov Phys Uspekekhy. 1968; 10(4): 509–14p.

J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans Micro Tech. 1999; 47(11): 2075–81p.

D.R. Smith, W.J. Padilla, D.C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity, Phys Rev Lett. 2000; 84: 4184–7p.

J.B. Pendry. Negative refraction males a perfect lens, Phys Rev Lett. 2000; 85: 3966–96p.

D.M. Pozar. Microwave Engineering. 3rd Edn., John Wiley & Sons; 2004.

H.A. Majid, M.K.A. Rahim, T. Marsi. Microstrip Antenna gain enhancement using left-handed Metamaterial Structure, Prog Electromagn Res. 2009; 8: 235–47p.

A.A. Sulaiman, A.S. Nasaruddin. Bandwidth enhancement in patch antenna by metamaterial substrate, Eur J Sci Res. 2010.

H.A. Mazid, M.K.A. Rahim, T. Masri. Left-handed metamaterial design for Microstrip antenna application, IEEE Int RF Microw Conf. 2008.

R.R. Ziolkowski. Double negative metamaterial design, experiments and applications, IEEE Trans Microw Theory Techniq. 2003; 51(7).

G. Lovat, P. Burghignoli, F. Capolino, D.R. Jackson, R.W. Ziolkowski. Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas, IET Microw Antenn Propag. 2007; 1: 177p.

S. Pyo, S.-M. Han, J.-W. Baik, W.-S. Yoon, Y.-S. Kim. Offset-fed metamaterial antenna for radiation mode generation with efficiency improvement, IET Microw Antenn Propag. 2010; 4: 1481p.

C.A. Balanis. Antenna Theory and Design. John Wiley and sons, Inc.; 1997.

R.W. Ziolkowski. Design fabricating and fabrication and testing of double negative metamaterials, IEEE Trans Antenn Propag. 2005; 51(7): 1516–29p.

G. Lovat, P. Burghignoli, F. Capolino, D.R. Jackson, R.W. Ziolkowski. Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas, IET Microw Antenn Propag. 2007; 1: 177p.

R. Varma, S.K. Sharma, B. Singh. Improvement in rectangular microstrip patch antenna parameters using Metamaterial with Active Devices, IEEE. 2014.

B. Garg, D. Saleem. Experimental verification of double negative property of LHM with significant improvement in microstrip transreciever parameters in S band, Int J Eng Pract Res. 2013; 2(2): 64–70p.

Pk. Singhal, B. Garg. Design and characterization of compact microstrip patch antenna using “split ring” shaped metamaterial structure, Int J Electr Comp Eng. 2012; 2(5): 655–62p.




DOI: https://doi.org/10.37628/ijmet.v3i2.557

Refbacks