Open Access Open Access  Restricted Access Subscription or Fee Access

A Compared With control of Signal Processing Focused Method to Speed Catalyst Development; A Review

Rayan Khan Khan

Abstract


In comparison to laboratory catalysis, statistical catalysis utilizes estimations such as density functional theory (DFT) to measure the characteristics of situations regarding. However, DFT estimates for a wide number of primary organisms on a range of recreational site systems are energy intensive. Throughout this work, we are developing a deep learning predictive framework for adsorption energy of intermediary organisms, which can effectively eliminate numerical overheads. Ours work involves the analysis and creation of suitable machine learning models and successful fingerprints or descriptors to easily determine energy in various contexts. In addition, the Bayesian analogous problem, which combines theoretical catalytic activity with its numerical equivalent, uses Markov chain Monte Carlo (MCMC) approaches to refine the ambiguity of the quantity of interest, such as the show transparency. However a significant number with forward experiments needed by MCMC may become a bottleneck, particularly in computational catalysis, where the assessment of normal distributions involves seeking a response for microkinetic models. An innovative and quicker MCMC approach is suggested to minimize the amount of costly goal assessments and to minimize the burn-in time by replicating the target coupled with a more informed delivery of the plan.

 

Keywords: ANN, Density functional theory (DFT), Markov chain Monte Carlo (MCMC), Metropolis-Hastings (MH) algorithm, Transition state theory (TST).

 


Full Text:

PDF

References


Djolonga J, Krause A, Cevher V.

High-dimensional gaussian process

bandits. Adv Neural Inf Process Syst

, C Curran Associates;2013:1025–

Andilla FD, Hamprecht FA. Learning

multi-level sparse representations. In:

Burges CJC, Bottou L, Welling M,

Ghahramani Z, Weinberger KQ,

International Journal of Electrical Machines & Drives

Vol. 6: Issue 2

www.journalspub.com

IJEMD (2020) 24–32 © JournalsPub 2020. All Rights Reserved Page 30

editors. Advances in Neural

Information Processing Systems 26.

Red Hook, NY: Curran Associates,

Inc; 2013. pp. 818–826.

Imani F, Cheng C, Chen R, Yang H.

Nested gaussian process modeling

and imputation of high-dimensional

incomplete data under uncertainty.

IISE Trans Healthc Syst Eng.

;9(4):315–26. doi:

1080/24725579.2019.1583704.

Tripathy R, Bilionis I, Gonzalez M.

Gaussian processes with built-in

dimensionality reduction: applications

to high-dimensional uncertainty

propagation. J Comp Phys.

;321:191–223. doi:

1016/j.jcp.2016.05.039.

Meier F, Hennig P, Schaal S.

Incremental local gaussian regression

in Advances in Neural Information

Processing Systems. 2014, pp. 972–

Welling M, Cortes C, Lawrence ND,

Weinberger KQ, editors. Curran

Associates. Inc. 2014. p. 972–80.

Nguyen-Tuong D, Seeger M, Peters J.

Local gaussian process regression for

real time online model learning and

control. Adv Neural Inf Process Syst.

;21:1193–200.

Robert CP, Casella G. The

Metropolis-hastings algorithm.

Springer Texts in Statistics New

York. 1999:231–83. doi:

1007/978–1–4757–3071–5_6.

Shahriari B, Swersky K, Wang Z,

Adams RP, de Freitas N. “Taking the

human out of the loop: a review of

Bayesian optimization.” Oxford,

Toronto: Universities of Harvard, and

Google DeepMind [Tech Rep]; 2015.

Nguyen V. Bayesian optimization for

accelerating hyper-parameter tuningin

IEEE Second International

Conference on Artificial Intelligence

and Knowledge Engineering (AIKE),

June 2019; 2019. p. 302–5.

Rasmussen CE. Gaussian processes

for machine learning. In: Gaussian

processes for machine learning. MIT

Press; 2006.

Murphy KP. Machine learning a

probabilistic perspective. MIT Press;

Lorenz EN. Deterministic

nonperiodic flow. J Atmos Sci.

;20(2):130–41. doi:

1175/1520–0469(1963)020

<0130:DNF>2.0.CO;2.

Székely GJ, Rizzo ML. Energy

statistics: A class of statistics based

on distances. J Stat Plan Inference.

;143(8):1249–72. doi:

1016/j.jspi.2013.03.018.

Krauth K, Bonilla EV, Cutajar K,

Filippone M. Autogp: exploring.

Rasmussen CE. Gaussian processes to

speed up hybrid Monte Carlo for

expensive. In: Bayesian integrals. the

th Valencia International Meeting,

pp. 651–659.

Bernardo JM, Bayarri MJ, Berger JO,

Dawid AP, Heckerman D, Smith

AFM, West M, editors Bayesian

Statistics 7. Oxford University Press;

p. 651–9.

Christen JA, Fox C. Markov chain

Monte Carlo using an approximation.

J Comp Graph Stat. 2005;14(4):795–

doi: 10.1198/106186005X76983.

Chowdhury A, Terejanu G. An

enhanced metropolis-hastings

algorithm based on Gaussian

processes. Conference Proceedings of

the Society for Experimental

Mechanics Series Springer

International Publishing. 2016;3:227–

doi: 10.1007/978–3–319–29754–

_22.

Hensman J, Fusi N, Lawrence ND.

Gaussian processes for big data. In:

Proceedings of the Twenty-Ninth

Conference on Uncertainty in

Artificial Intelligence, ser: AUAI

Press, 2013. Arlington, VA: UAI;

’13. p. 282–90.

Haario H, Saksman E, Tamminen J.

Adaptive proposal distribution for

random walk metropolis algorithm.

A Compared with control of Signal Processing Focused Rayan Khan Ahmed

IJEMD (2020) 24–32

;14(3):375–95. doi:

1007/s001800050022.

Haario H, Laine M, Mira A, Saksman

E. Dram: efficient adaptive MCMC.

Stat Comput. Dec 2006;16(4):339–

doi: 10.1007/s11222–006–9438–

Larjo A, Lähdesmäki H. Using multistep proposal distribution for

improved MCMC convergence in

Bayesian network structure learning.

EURASIP J Bioinform Syst Biol.

;2015(1):6. doi:

1186/s13637–015–0024–7, PMID

Korattikara A, Chen Y, Welling M.

Austerity in MCMC land: cutting the

metropolis Hastings budget. In:

Proceedings of the 31st international

conference on International

Conference on Machine LearningVolume 32, ser. JMLR.org.

ICML’14; 2014. p. 181–9.

Quiroz M, Kohn R, Villani M, Tran

M-N. Speeding up MCMC by

efficient data subsampling. J Am Stat

Assoc. 2019;114(526):831–43. doi:

1080/01621459.2018.1448827.

Lamminpää O, Hobbs J,

Brynjarsdóttir J, Laine M, Braverman

A, Lindqvist H, Tamminen J.

Accelerated MCMC for satellitebased measurements of atmospheric

CO2. Remote Sens. 2019;11(17). doi:

3390/rs11172061.

Livingstone S, Faulkner MF, Roberts

GO. Kinetic energy choice in

Hamiltonian/hybrid Monte Carlo.

Biometrika. 2019;106(2):303–19, 04.

doi: 10.1093/biomet/asz013.

Sutskever I, Martens J, Dahl G,

Hinton G. On the importance of

initialization and momentum in deep

learning in Proceedings of the 30th

International Conference on Machine

Learning, ser. Proceedings of

Machine Learning Research Dasgupta

S, McAllester D, editors. Vol. 28, no.

Atlanta: PMLR; Jun 17–19 2013.

p. 1139–47.

Hanin A, Rolnick D. How to start

training: the effect of initialization

and architecture. Adv Neural Inf

Process Syst 31 Curran

Associates;2018:571–81.

Vehbi Olgac A, Karlik B.

Performance analysis of various

activation functions in generalized

MLP architectures of neural

networks. Int J Artif Intell Expert

Syst. 2011;1:111–22, 02.

Tan TG, Teo J, Anthony P. A

comparative investigation of nonlinear activation functions in neural

controllers for search-based game ai

engineering. Artif Intell Rev. Jan

;41(1):1–25. doi:

1007/s10462–011–9294-y.

Byrd MR, Jarvis SA, Bhalerao AH.

Reducing the run-time of MCMC

programs by multithreading on SMP

architectures. In: Parallel Distrib

Process. IPDPS 2008. IEEE

International Symposium on. Vol.

; 2008. p. 1–8.

Ahn S, Shahbaba B, Welling M.

’Distributed stochastic gradient

MCMC,’in. Proceedings of the 31st

international conference on Machine

Learning (ICML-14). Proceedings.

JMLR Workshop and Conference;

p. 1044–52.

Collins CR, Gordon GJ, von

Lilienfeld OA, Yaron DJ. Constant

size descriptors for accurate machine

learning models of molecular

properties. J Chem Phys. Jun

;148(24):241718. doi:

1063/1.5020441, PMID 29960361.

LeCun Y, Haffner P, Bottou L,

Bengio Y. Object recognition with

gradient-based learning. Shape

Contour Grouping Comput Vis.

:319–45. doi: 10.1007/3–540–

–6_19.

Hubel DH, Wiesel TN. Receptive

fields of single neurones in the cat’s

International Journal of Electrical Machines & Drives

Vol. 6: Issue 2

www.journalspub.com

IJEMD (2020) 24–32 © JournalsPub 2020. All Rights Reserved Page 32

striate cortex. J Physiol. Oct

;148(3):574–91. doi:

1113/jphysiol.1959.sp006308,

PMID 14403679.

Ringach DL. Mapping receptive

fields in primary visual cortex. J

Physiol. Aug 2004;558(Pt 3):717–28.

doi: 10.1113/jphysiol.2004.065771,

PMID 15155794.

Lecun Y, Bottou L, Bengio Y,

Haffner P. Gradient-based learning

applied to document recognition. Proc

IEEE. Nov 1998;86(11):2278–324.

doi: 10.1109/5.726791.

Choromanska A, Henaff M, Mathieu

M, Arous GB, LeCun Y. The loss

surfaces of multilayer networks in

Proceedings of the Eighteenth

International Conference on Artificial

Intelligence and Statistics, ser.

Proceedings of Machine.

Learning research, G. Lebanon and

S.V.N. Vishwanathan, Eds., vol. 38.

San Diego: PMLR, May 09–12 2015,

pp. 192–204.

Wu Z, Ramsundar B, Feinberg EN,

Gomes J, Geniesse C, Pappu AS,

Leswing K, Pande V. Moleculenet: a

benchmark for molecular machine

learning. Chem Sci. 2018;9(2):513–

doi: 10.1039/c7sc02664a, PMID

Kearnes S, McCloskey K, Berndl M,

Pande V, Riley P. Molecular graph

convolutions: moving beyond

fingerprints. J Comput Aid Mol Des.

Aug 2016;30(8):595–608. doi:

1007/s10822–016–9938–8, PMID

Duvenaud D, Maclaurin D, AguileraIparraguirre J, Gómez-Bombarelli R,

Hirzel T, Aspuru-Guzik A, Adams

RP. Convolutional networks on

graphs for learning molecular

fingerprints. In: Proceedings of the

th international conference on

Neural Information processing

Systems-Volume 2, ser. Cambridge,

MA: NIPS. MIT Press; 2015. p.

–32.

Segler MHS, Kogej T, Tyrchan C,

Waller MP. Generating focused

molecule libraries for drug discovery

with recurrent neural networks. ACS

Cent Sci. 2018;4(1):120–31. doi:

1021/acscentsci.7b00512, PMID

Torng W, Altman RB. 3D deep

convolutional neural networks for

amino acid environment similarity

analysis. BMC Bioinformatics. Jun

;18(1):302. doi:

1186/s12859–017–1702–0, PMID

Djolonga J, Krause A, Cevher V.

High-dimensional gaussian process

bandits. Adv Neural Inf Process Syst

, C Curran Associates;2013:1025–

Andilla FD, Hamprecht FA. Learning

multi-level sparse representations. In:

Burges CJC, Bottou L, Welling M,

Ghahramani Z, Weinberger KQ,

International Journal of Electrical Machines & Drives

Vol. 6: Issue 2

www.journalspub.com

IJEMD (2020) 24–32 © JournalsPub 2020. All Rights Reserved Page 30

editors. Advances in Neural

Information Processing Systems 26.

Red Hook, NY: Curran Associates,

Inc; 2013. pp. 818–826.

Imani F, Cheng C, Chen R, Yang H.

Nested gaussian process modeling

and imputation of high-dimensional

incomplete data under uncertainty.

IISE Trans Healthc Syst Eng.

;9(4):315–26. doi:

1080/24725579.2019.1583704.

Tripathy R, Bilionis I, Gonzalez M.

Gaussian processes with built-in

dimensionality reduction: applications

to high-dimensional uncertainty

propagation. J Comp Phys.

;321:191–223. doi:

1016/j.jcp.2016.05.039.

Meier F, Hennig P, Schaal S.

Incremental local gaussian regression

in Advances in Neural Information

Processing Systems. 2014, pp. 972–

Welling M, Cortes C, Lawrence ND,

Weinberger KQ, editors. Curran

Associates. Inc. 2014. p. 972–80.

Nguyen-Tuong D, Seeger M, Peters J.

Local gaussian process regression for

real time online model learning and

control. Adv Neural Inf Process Syst.

;21:1193–200.

Robert CP, Casella G. The

Metropolis-hastings algorithm.

Springer Texts in Statistics New

York. 1999:231–83. doi:

1007/978–1–4757–3071–5_6.

Shahriari B, Swersky K, Wang Z,

Adams RP, de Freitas N. “Taking the

human out of the loop: a review of

Bayesian optimization.” Oxford,

Toronto: Universities of Harvard, and

Google DeepMind [Tech Rep]; 2015.

Nguyen V. Bayesian optimization for

accelerating hyper-parameter tuningin

IEEE Second International

Conference on Artificial Intelligence

and Knowledge Engineering (AIKE),

June 2019; 2019. p. 302–5.

Rasmussen CE. Gaussian processes

for machine learning. In: Gaussian

processes for machine learning. MIT

Press; 2006.

Murphy KP. Machine learning a

probabilistic perspective. MIT Press;

Lorenz EN. Deterministic

nonperiodic flow. J Atmos Sci.

;20(2):130–41. doi:

1175/1520–0469(1963)020

<0130:DNF>2.0.CO;2.

Székely GJ, Rizzo ML. Energy

statistics: A class of statistics based

on distances. J Stat Plan Inference.

;143(8):1249–72. doi:

1016/j.jspi.2013.03.018.

Krauth K, Bonilla EV, Cutajar K,

Filippone M. Autogp: exploring.

Rasmussen CE. Gaussian processes to

speed up hybrid Monte Carlo for

expensive. In: Bayesian integrals. the

th Valencia International Meeting,

pp. 651–659.

Bernardo JM, Bayarri MJ, Berger JO,

Dawid AP, Heckerman D, Smith

AFM, West M, editors Bayesian

Statistics 7. Oxford University Press;

p. 651–9.

Christen JA, Fox C. Markov chain

Monte Carlo using an approximation.

J Comp Graph Stat. 2005;14(4):795–

doi: 10.1198/106186005X76983.

Chowdhury A, Terejanu G. An

enhanced metropolis-hastings

algorithm based on Gaussian

processes. Conference Proceedings of

the Society for Experimental

Mechanics Series Springer

International Publishing. 2016;3:227–

doi: 10.1007/978–3–319–29754–

_22.

Hensman J, Fusi N, Lawrence ND.

Gaussian processes for big data. In:

Proceedings of the Twenty-Ninth

Conference on Uncertainty in

Artificial Intelligence, ser: AUAI

Press, 2013. Arlington, VA: UAI;

’13. p. 282–90.

Haario H, Saksman E, Tamminen J.

Adaptive proposal distribution for

random walk metropolis algorithm.

A Compared with control of Signal Processing Focused Rayan Khan Ahmed

IJEMD (2020) 24–32

Computational Statistics.

;14(3):375–95. doi:

1007/s001800050022.

Haario H, Laine M, Mira A, Saksman

E. Dram: efficient adaptive MCMC.

Stat Comput. Dec 2006;16(4):339–

doi: 10.1007/s11222–006–9438–

Larjo A, Lähdesmäki H. Using multistep proposal distribution for

improved MCMC convergence in

Bayesian network structure learning.

EURASIP J Bioinform Syst Biol.

;2015(1):6. doi:

1186/s13637–015–0024–7, PMID

Korattikara A, Chen Y, Welling M.

Austerity in MCMC land: cutting the

metropolis Hastings budget. In:

Proceedings of the 31st international

conference on International

Conference on Machine LearningVolume 32, ser. JMLR.org.

ICML’14; 2014. p. 181–9.

Quiroz M, Kohn R, Villani M, Tran

M-N. Speeding up MCMC by

efficient data subsampling. J Am Stat

Assoc. 2019;114(526):831–43. doi:

1080/01621459.2018.1448827.

Lamminpää O, Hobbs J,

Brynjarsdóttir J, Laine M, Braverman

A, Lindqvist H, Tamminen J.

Accelerated MCMC for satellitebased measurements of atmospheric

CO2. Remote Sens. 2019;11(17). doi:

3390/rs11172061.

Livingstone S, Faulkner MF, Roberts

GO. Kinetic energy choice in

Hamiltonian/hybrid Monte Carlo.

Biometrika. 2019;106(2):303–19, 04.

doi: 10.1093/biomet/asz013.

Sutskever I, Martens J, Dahl G,

Hinton G. On the importance of

initialization and momentum in deep

learning in Proceedings of the 30th

International Conference on Machine

Learning, ser. Proceedings of

Machine Learning Research Dasgupta

S, McAllester D, editors. Vol. 28, no.

Atlanta: PMLR; Jun 17–19 2013.

p. 1139–47.

Hanin A, Rolnick D. How to start

training: the effect of initialization

and architecture. Adv Neural Inf

Process Syst 31 Curran

Associates;2018:571–81.

Vehbi Olgac A, Karlik B.

Performance analysis of various

activation functions in generalized

MLP architectures of neural

networks. Int J Artif Intell Expert

Syst. 2011;1:111–22, 02.

Tan TG, Teo J, Anthony P. A

comparative investigation of nonlinear activation functions in neural

controllers for search-based game ai

engineering. Artif Intell Rev. Jan

;41(1):1–25. doi:

1007/s10462–011–9294-y.

Byrd MR, Jarvis SA, Bhalerao AH.

Reducing the run-time of MCMC

programs by multithreading on SMP

architectures. In: Parallel Distrib

Process. IPDPS 2008. IEEE

International Symposium on. Vol.

; 2008. p. 1–8.

Ahn S, Shahbaba B, Welling M.

’Distributed stochastic gradient

MCMC,’in. Proceedings of the 31st

international conference on Machine

Learning (ICML-14). Proceedings.

JMLR Workshop and Conference;

p. 1044–52.

Collins CR, Gordon GJ, von

Lilienfeld OA, Yaron DJ. Constant

size descriptors for accurate machine

learning models of molecular

properties. J Chem Phys. Jun

;148(24):241718. doi:

1063/1.5020441, PMID 29960361.

LeCun Y, Haffner P, Bottou L,

Bengio Y. Object recognition with

gradient-based learning. Shape

Contour Grouping Comput Vis.

:319–45. doi: 10.1007/3–540–

–6_19.

Hubel DH, Wiesel TN. Receptive

fields of single neurones in the cat’s

International Journal of Electrical Machines & Drives

Vol. 6: Issue 2

www.journalspub.com

IJEMD (2020) 24–32

striate cortex. J Physiol. Oct

;148(3):574–91. doi:

1113/jphysiol.1959.sp006308,

PMID 14403679.

Ringach DL. Mapping receptive

fields in primary visual cortex. J

Physiol. Aug 2004;558(Pt 3):717–28.

doi: 10.1113/jphysiol.2004.065771,

PMID 15155794.

Lecun Y, Bottou L, Bengio Y,

Haffner P. Gradient-based learning

applied to document recognition. Proc

IEEE. Nov 1998;86(11):2278–324.

doi: 10.1109/5.726791.

Choromanska A, Henaff M, Mathieu

M, Arous GB, LeCun Y. The loss

surfaces of multilayer networks in

Proceedings of the Eighteenth

International Conference on Artificial

Intelligence and Statistics, ser.

Proceedings of Machine.

Learning research, G. Lebanon and

S.V.N. Vishwanathan, Eds., vol. 38.

San Diego: PMLR, May 09–12 2015,

pp. 192–204.

Wu Z, Ramsundar B, Feinberg EN,

Gomes J, Geniesse C, Pappu AS,

Leswing K, Pande V. Moleculenet: a

benchmark for molecular machine

learning. Chem Sci. 2018;9(2):513–

doi: 10.1039/c7sc02664a, PMID

Kearnes S, McCloskey K, Berndl M,

Pande V, Riley P. Molecular graph

convolutions: moving beyond

fingerprints. J Comput Aid Mol Des.

Aug 2016;30(8):595–608. doi:

1007/s10822–016–9938–8, PMID

Duvenaud D, Maclaurin D, AguileraIparraguirre J, Gómez-Bombarelli R,

Hirzel T, Aspuru-Guzik A, Adams

RP. Convolutional networks on

graphs for learning molecular

fingerprints. In: Proceedings of the

th international conference on

Neural Information processing

Systems-Volume 2, ser. Cambridge,

MA: NIPS. MIT Press; 2015. p.

–32.

Segler MHS, Kogej T, Tyrchan C,

Waller MP. Generating focused

molecule libraries for drug discovery

with recurrent neural networks. ACS

Cent Sci. 2018;4(1):120–31. doi:

1021/acscentsci.7b00512, PMID

Torng W, Altman RB. 3D deep

convolutional neural networks for

amino acid environment similarity

analysis. BMC Bioinformatics. Jun

;18(1):302. doi:

1186/s12859–017–1702–0, PMID


Refbacks

  • There are currently no refbacks.