Open Access Open Access  Restricted Access Subscription or Fee Access

Machine Learning in Catalysis, the History of ML in Experimental Heterogeneous Catalysis: A Review

Supriya Rakshit, Mitali Pathak

Abstract


Heterogeneous catalysis is used in nearly 80 per cent of all industrial chemical processes and contributes greatly to global GDP. As a consequence, catalytic discovery and optimization are of considerable importance to improve process performance and reduce costs for intermediate and commodity chemicals. The discovery and optimization process has traditionally been undertaken by the Edisonian trial-and-error strategy, which has been efficient but expensive and inefficient. More intelligent methods, such an experiment design (DOE), have improved the pace of catalytic exploration by offering an experimental structure. Analysis methods such as HTE have also led to an improvement in the discovery rate. Advances in computer hardware have led to breakthroughs in computational techniques such as density functional theory (DFT) that enable the development and evaluation of the in-silicon surface catalyst. Both of these methods have accelerated the exploration of catalysts by Edisonian approaches.


Keywords: Artificial intelligence technology, density functional theory (DFT), heterogeneous catalysis, machine learning in catalysis, materials genome initiative (MGI), metallic glasses (MG), oxidative dehydrogenation of ethane (ODHE)


Full Text:

PDF

References


Troparevsky M Claudia, Morris JR, Daene M, Wang Y, Lupini AR, Stocks GM. Beyond atomic sizes and Hume-Rothery rules: understanding and predicting high-entropy alloys. JOM. 2015;67(10):2350–63. issn: 1543–1851. doi: 10.1007/s11837–015–1594–2.

Cohen William, Singer Yoram. A simple, fast, and effective rule learner. Mach Learn. 1999.

Svetnik Vladimir, Liaw Andy, Tong Christopher, Culberson JChristopher, Sheridan Robert P, Feuston Bradley P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58. issn: 0095–2338. doi: 10.1021/ci034160g, PMID 14632445.

Li Song, Wang Peng, Goel Lalit. Wind power forecasting using neural network ensembles with feature selection. IEEE Trans Sustain Energy. 2015;6(4):1447–56. issn: 1949–3029. doi: 10.1109/TSTE.2015.2441747.

Novakovic Jasmina, Strbac Perica, Bulatovic Dusan. Toward optimal

feature selection using ranking methods and classification algorithms. Yugoslav J Oper Res. 2011;21(1):119–35. issn: 0354–0243. doi: 10.2298/YJOR1101119N.

Cai Jie, Luo J, Wang S, Yang S. Feature selection in machine learning: A new perspective. Neurocomputing. 2018;300:70–9. issn: 1872–8286. doi: 10.1016/j.neucom.2017.11.077.

Li Jundong et al. Feature selection: A data perspective. ACM Comput Surv. 2017. issn: 1557–7341;50:6:arXiv: Available from: arXiv:1601.07996v5. doi: 10.1145/3136625.

Wolpert David H, Macready William G. No free lunch theorems for optimization. IEEE Trans Evol Computat. 1997;1(1):67–82. doi: 10.1109/4235.585893.

Wolpert David H, Macready William G. Coevolutionary free lunches. IEEE Trans Evol Computat. 2005;9(6):721–35. issn: 1089–778X. doi: 10.1109/TEVC.2005.856205.

Miikkulainen Risto et al. Evolving deep neural networks. Artif Intell Age Neural Netw Brain Comput. 2019:293–312:arXiv: Available from: arXiv:1703.00548v2. doi: 10.1016/b978–0–12–815480–9.00015–3.

Lipton Zachary C, Berkowitz John, Elkan Charles. A critical review of recurrent neural networks for sequence learning. p. 1–38:arXiv:arXiv:; 2015. In: 1506.00019. Available from: http://arxiv.org/abs/1506.00019.

Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Eng R Rep. 2004;44(2–3):45–89. issn: 0927–796X. doi: 10.1016/j.mser.2004.03.001.

Inoue Akihisa. Bulk amorphous and nanocrystalline alloys with high functional properties. Mater Sci Eng A. 2001;304–306(1–2):1–10. issn: 0921–5093. doi: 10.1016/S0921–5093(00)01551–3.

Inoue Akihisa. High strength bulk amorphous alloys with low critical cooling rates (Overview). Mater Trans JIM. 1995;36(7):866–75. issn: 0916–1821. doi: 10.2320/matertrans1989.36.866. url: https://www.

Johnson WL. Bulk amorphous metal-an emerging engineering material. JOM. 2002;54(3):40–3. issn: 1047–4838. doi: 10.1007/BF02822619.

Inoue Akihisa, Shen Baolong, Takeuchi Akira. Developments and applications of bulk glassy alloys in late transition metal base system. Mater Trans. 2006;47(5):1275–85. issn: 1345–9678. doi: 10.2320/matertrans.47.1275.

Salimon AI et al. Bulk metallic glasses: what are they good for? Mater Sci Eng A. 2004;375–377 SPEC. ISS.:385–8. issn: 0921–5093. doi: 10.1016/j.msea.2003.10.167.

Chen Mingwei. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011;3(9):82–90. issn: 1884–4049. doi: 10.1038/asiamat.2011.30.

Jiang HG, Baram J. Estimation of the glass transition temperature in metallic glasses. Mater Sci Eng A. 1996;208(2):232–8. issn: 0921–5093. doi: 10.1016/0921–5093(95)10054–7.

Klement W, Willens RH, Duwez Pol. Non-crystalline structure in solidified gold–silicon alloys. Nature. Sep 1960;187(4740):869–70. issn: 0028–0836. doi: 10.1038/187869b0.

COHEN MH, TURNBULL D. Composition requirements for glass formation in metallic and ionic systems. Nature. Jan 1961;189(4759):131–2. issn: 0028–0836. doi: 10.1038/189131b0.

Chen HS, Kimerling LC, Poate JM, Brown WL. Diffusion in a Pd-Cu-Si metallic glass. Appl Phys Lett. Apr 1978;32(8):461–3. issn: 0003–6951. doi: 10.1063/1.90107.

Drehman AJ, Greer AL, Turnbull D. Bulk formation of a metallic glass:

Pd40 Ni40 P20. Appl Phys Lett. Oct 1982;41(8):716–7. issn: 0003–6951. doi: 10.1063/1.93645.

Peker A, Johnson WL. A highly processable metallic glass: Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5. Appl Phys Lett. Oct 1993;63(17):2342–4. issn: 0003–6951. doi: 10.1063/1.110520.

Inoue Akihisa. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279–306. issn: 1359–6454. doi: 10.1016/S1359–6454(99)00300–6.

Greer AL. Metallic glasses. Science. Mar 1995;267(5206):1947–53. issn: 0036–8075. doi: 10.1126/science.267.5206.1947. PMID 17770105.

Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses. J Non-Crystal Solids. Apr 1984;64(1–2):113–34. issn: 0022–3093. doi: 10.1016/0022–3093(84)90210–2.

Telford Mark. The case for bulk metallic glass. Mater Today. Mar 2004;7(3):36–43. issn: 1369–7021. doi: 10.1016/S1369–7021(04). url: https:// linkinghub. elsevier/retrieve/pii /S1369702104001245.

Polk DE. The structure of glassy metallic alloys. Acta Metall. Apr 1972;20(4):485–91. issn: 0001–6160. doi: 10.1016/0001–6160(72). url: https:// linkinghub. elsevier/retrieve/pii/000161607290003X.

Nagel SR, Tauc J. Nearly free-electron approach to the theory of metallic glass alloys. Phys Rev Lett. 1975;35(6):380–3. issn: 0031–9007:arXiv: Available from: arXiv:1011. doi: 10.1103/PhysRevLett.35.380.

Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50(13):3501–12. issn: 1359–

doi: 10.1016/S1359–6454(02)00166–0.

Lu ZP, Liu CT. A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics. Oct 2004;12(10–11):1035–43. issn: 0966–9795. doi: 10.1016/j.intermet.2004.04.032.

Schmidt I. Glass-forming ability of Allofs based on iron–carbon. Chem Informationsdienst. 1983, no–no;14:48.

Lu ZP, Liu CT. Glass formation criterion for various glass-forming systems. Phys Rev Lett. 2003;91(11):115505. issn: 0031–9007. doi: 10.1103/PhysRevLett.91.115505, PMID 14525439.

Lu ZP, Li Y, Ng SC. Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. J Non-Crystal Solids. May 2000;270(1–3):103–14. issn: 0022–3093. doi: 10.1016/S0022–3093(00)00064–8.

Lu ZP, Tan H, Ng SC, Li Y. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scr Mater. Mar 2000;42(7):667–73. issn: 1359–6462. doi: 10.1016/S1359–6462(99)00417–0.

Du XH, Huang JC, Liu CT, Lu ZP. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys. Apr 2007;101(8):086108. issn: 0021–8979. doi: 10.1063/1.2718286.

Miedema AR, Boom R, De Boer FR. On the heat of formation of solid alloys. J Less Common Met. 1975;41(2):283–98. doi: 10.1016/0022–5088(75)90034-X.

Miedema AR. On the heat of formation of solid alloys II. J Less Common Met. 1976;46(1):67–83. doi: 10.1016/0022–5088(76)90180–6.

Boom R, De Boer FR, Miedema AR. On the heat of mixing of liquid alloys I. J Less Common Met. 1976;45(2):237–45. doi: 10.1016/0022–5088(76)90270–8.

Ma D, Stoica AD, Wang XL. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater. 2009;8(1):30–4. issn: 1476–1122. doi: 10.1038/nmat2340://www. PMID 19060888.

Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. Prentice Hall; 2001.

Wang Xun-LI. The application of neutron diffraction to engineering problems. JOM. Mar 2006;58(3):52–7. issn: 1047–4838. doi: 10.1007/s11837–006–0162–1.

Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2–3):233–8. issn: 0254–0584. doi: 10.1016/j.matchemphys.2011.11.021.

Takeuchi Akira, Inoue Akihisa. Quantitative evaluation of critical cooling rate for metallic glasses. Mater Sci Eng A. May 2001;304–306:446–51. issn: 0921–5093. doi: 10.1016/S0921. url: https:// linkinghub. elsevier/retrieve.pii/S0921509300014465.

Ma Zhen, Zaera Francisco. Heterogeneous catalysis by metals. In:. Chichester, UK: John Wiley & Sons, Ltd. doi: 10.1002/0470862106.ia084; Mar 2006. Encyclopedia of inorganic chemistry. Available from: http://doi.wiley.com/10.1002/0470862106.ia084.

Meurig Thomas John, Thomas W John. Principles and practice of heterogeneous catalysis. John Wiley & Sons; 2014.

Medford Andrew J, Kunz MR, Ewing SM, Borders T, Fushimi R. Extracting knowledge from data through catalysis informatics. ACS Catal. Aug 2018;8(8):7403–29. issn: 2155–5435. doi: 10.1021/acscatal.8b01708.

Xue Dezhen, Balachandran Prasanna V, Hogden John, Theiler James, Xue

Deqing, Lookman Turab. Accelerated search for materials with targeted properties by adaptive design. Nat Commun. 2016;7:11241. issn: 2041–1723. doi: 10.1038/ncomms11241, PMID 27079901.


Refbacks

  • There are currently no refbacks.