Open Access Open Access  Restricted Access Subscription or Fee Access

Series Reimbursement Including SSR Evaluation in DFIG-BASED Wind Turbines: Description of Problems Recognition

Upasana Sinha, Saksham Garg

Abstract


This study begins with the phenomenon of SSR in a capacitor’s series of compensated wind turbines. A DFIG-based wind farm connected to a system of offset power lines is known to be a case study. A limited signal stability analysis of the unit is given, and the systems own values are obtained. Using both modal analysis and time-domain simulation, the system is seen to be potentially unstable due to SSR mode. Three different choices for the inclusion of the SSR steam controller (SSRDC) are then discussed. SSRDC may be added to (1) Gate Regulated Series Condenser (GCSC) (2) Thyristor Managed Series Condenser (TCSC) or (3) DFIG Rotor Side Converter (RSC) and Grid Side Converter (GSC) Controllers. The first and second cases refer to the series of flexible AC transmission systems (FACTS) and the third case uses DFIG back-to-back converters to damp the SSR. SSRDC is designed to include a residue-based methodology and root locus diagram. Utilizing residue-based research, an ideal input control signal (ICS) for SSRDC is developed which can damp the SSR mode without destabilizing other modes, and the required gain for SSRDC is determined using root-locus assessment.


Keywords: Rotor side converter (RSC), regulation of interactions, SSIGE, SSRDC, thyristor managed series condenser (TCSC), torsional interactions


Full Text:

PDF

References


Mondal SK. Active and reactive power compensation of data center using multi-level Starcom inverter. In: IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), June 2016; 2016. p. 1–8.

Marzoughi A, Imaneini H, Moeini A. An optimal selective harmonic mitigation technique for high power converters. Int J Electr Power Energy Syst. 2013;49:34–9. doi: 10.1016/j.ijepes.2012.12.007.

Kesler M, Ozdemir E. Synchronous-reference-frame-based control method for UPQC under unbalanced and distorted load conditions. IEEE Trans Ind Electron. September 2011;58(9):3967–75. doi: 10.1109/TIE.2010.2100330.

Chang GW, Chen SK, Su HJ, Wang PK. Accurate assessment of harmonic and interharmonic currents generated by VSI-fed drives under unbalanced supply voltages. IEEE Trans Power Delivery. April 2011;26(2):1083–91. doi: 10.1109/TPWRD.2010.2089473.

De la Rosa F. Harmonics and power systems. CRC press; 2006.

Shipp DD, Vilcheck WS. Power quality and line considerations for variable speed ac drives. IEEE Trans on Ind Applicat. 1996;32(2):403–10. doi: 10.1109/28.491490.

Shin Y-J, Powers EJ, Grady M, Arapostathis A. Power quality indices for transient disturbances. IEEE Trans Power Delivery. 2006;21(1):253–61. doi: 10.1109/TPWRD.2005.855444.

Morsi WG, El-Hawary ME. Defining power components in non-sinusoidal unbalanced polyphase systems: the issues. IEEE Trans Power Delivery. October 2007;22(4):2428–38. doi: 10.1109/TPWRD.2007.905344.

Hyosung Kim H, Blaabjerg F, Bak-Jensen B. Spectral analysis of instantaneous powers in single-phase and three-phase systems with use of PQR theory. IEEE Trans Power Electron. 2002;17(5):711–20. doi: 10.1109/TPEL.2002.802188.

Blackburn JL. Symmetrical components for power systems engineering. CRC Press; 1993.

Sharon D, Montano J-C, Lopez A, Castilla M, Borras D, Gutierrez J. Power quality factor for networks supplying unbalanced nonlinear loads. IEEE Trans Instrum Meas. 2008;57(6):1268–74. doi: 10.1109/TIM.2007.915146.

Singh B, Chandra A, Al-Haddad K. Power quality: problems and mitigation techniques. John Wiley & Sons; 2014.

Shwedhi M, Sultan M. Power factor correction capacitors; essentials and cautions. In: Power Engineering Society Summer Meeting; 2000. IEEE, vol. 3. IEEE, 2000, pp. 1317–22.

Deb G. Ferranti effect in transmission line. Int J Electr Comput Eng. 2012;2(4):447. doi: 10.11591/ijece.v2i4.451.

Hingorani NG, Gyugyi L. Understanding FACTS. IEEE Publications; 2000.

Czarnecki LS, Shih Min Hsu, Guangda Chen. Adaptive balancing compensator. IEEE Trans Power Delivery. 1995;10(3):1663–9. doi: 10.1109/61.400954.

Mohammadpour HA, Ghaderi A, Santi E. Analysis of sub-synchronous resonance in doubly fed induction generator-based wind farms interfaced with gate–controlled series capacitor. IET Gener Transm Distrib. 2014;8(12):1998–2011. doi: 10.1049/iet-gtd.2013.0643.

Mohammadpour HA, Ghaderi A, Mohammadpour H, Santi E. SSR damping in wind farms using observed-state feedback control of DFIG converters. Electr Power Syst Res. 2015;123:57–66. doi: 10.1016/j.epsr.2015.01.018.

Gyugyi L, Sen KK, Schauder CD. The interline power flow controller concept: a new approach to power flow management in transmission systems. IEEE Trans Power Delivery. 1999;14(3):1115–23. doi: 10.1109/61.772382.

Ginn HL. Comparison of applicability of power theories to switching compensator control. Przegld Elektrotech. 2013;89.

Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement. IEEE Trans Ind Electron. October 1999;46(5):960–71. doi: 10.1109/41.793345.

Fryze S. Wirk-, Blind-und Scheinleistung in elektrischen Stromkreisen mit nichtsinusförmigem Verlauf von Strom und Spannung. Elektrotech Z, June. 1932;25.

Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensator comprising switching devices without energy storage components. IEEE Trans on Ind Applicat. May 1984;IA-20(3):625–30. doi: 10.1109/TIA.1984.4504460.

Akagi H, Watanabe EH, M. Aredes, Instantaneous power theory and applications to power conditioning. Vol. 31. John Wiley & Sons; 2007.

Tedeschi E. Cooperative control of distributed compensation systems in electric networks under non-sinusoidal operations; 2009.

Czarnecki LS. Non-periodic currents: their properties, identification and compensation fundamentals. In: Power Engineering Society Summer Meeting; 2000. IEEE, vol. 2. IEEE, 2000, pp. 971–6.

Cohen L. Time-frequency analysis. Vol. 778. Prentice hall; 1995.

Boashash B. Time-frequency signal analysis and processing: a comprehensive reference. Academic Press; 2015.

Shin Y-J, Powers EJ, Grady WM, Arapostathis A. Signal processing-based direction finder for transient capacitor switching disturbances. IEEE Trans Power Delivery. 2008;23(4):2555–62. doi: 10.1109/TPWRD.2008.2002984.

Farghal SA, Kandil MS, Elmitwally A. Evaluation of a shunt active power conditioner with a modified control scheme under nonperiodic conditions. IEE Proc Gener Transm Distrib. 2002;149(6):726–32. doi: 10.1049/ip-gtd:20020663.

Czarnecki LS, Lasicz A. Active, reactive, and scattered current in circuits with nonperiodic voltage of a finite energy. IEEE Trans Instrum Meas. 1988;37(3):398–402. doi: 10.1109/19.7463.

Tolbert LM, Xu Y, Peng FZ, Chen J, Chiasson JN. Definitions for non-periodic current compensation. In: European Power Electronics Conference (EPE); 2003.

Esfandiari A, Parniani M, Mokhtari H. Power quality impacts of an

electric arc furnace and its compensation. J Electr Eng Technol. 2006;1(2):153–60. doi: 10.5370/JEET.2006.1.2.153.

Staudt V. Fryze-buchholz-depenbrock: A time-domain power theory. In: Non-Sinusoidal Currents and Compensation. ISNCC 2008; 2008. International School. On. June 2008:1–12.

Watanabe EH, Aredes M. Compensation of nonperiodic currents using the instantaneous power theory. In: Power Engineering Society Summer Meeting; 2000. IEEE, vol. 2. IEEE, 2000, pp. 994–9.

Watanabe EH, Akagi H, Aredes M. Instantaneous p-q power theory for compensating non-sinusoidal systems. In: Nonsinusoidal Currents and Compensation. ISNCC 2008; 2008. International School. On. June 2008:1–10.

Hyosung Kim, Blaabjerg F, Bak-Jensen B, Jaeho Choi. Instantaneous power compensation in three-phase systems by using PQR theory. IEEE Trans Power Electron. 2002;17(5):701–10. doi: 10.1109/TPEL.2002.802185.

Yan Xu, Tolbert LM, Peng FZ, Chiasson JN, Jianqing Chen. Compensation based nonactive power definition. IEEE Power Electron Lett. June 2003;1(2):45–50. doi: 10.1109/LPEL.2003.819915.

Akagi H. Active filters and energy storage systems operated under non-periodic conditions. In: Power Engineering Society Summer Meeting; 2000. IEEE, vol. 2,2000, pp. 965–70.

Czarnecki LS. Currents AZ physical components (cpc) concept: A fundamental of power theory. Prz Elektrotech. 2008;84(6):28–37.

Salmeron P, Herrera RS. Distorted and unbalanced systems compensation within instantaneous reactive power framework. IEEE Trans Power Delivery. July 2006;21(3):1655–62. doi: 10.1109/TPWRD.2006.874115.

Czarnecki LS, Chen G. Compensation of semi-periodic currents. Euro Trans Electr Power. 2002;12(1):33–9. doi: 10.1002/etep.4450120106.

Ghaderi A, Mohammadpour HA, Ginn HL, Shin YJ. High-impedance fault detection in the distribution network using the time-frequency-based algorithm. IEEE Trans Power Delivery. June 2015;30(3):1260–8. doi: 10.1109/TPWRD.2014.2361207.

Islam M, Mohammadpour HA, Ghaderi A, Brice CW, Shin Y-J. Time-frequency-based instantaneous power components for transient disturbances according to IEEE standard 1459. IEEE Trans Power Delivery. 2015;30(3):1288–97. doi: 10.1109/TPWRD.2014.2361203.

Girgis AA, Stephens JW, Makram EB. Measurement and prediction of voltage flicker magnitude and frequency. IEEE Trans Power Delivery. 1995;10(3):1600–5. doi: 10.1109/61.400945.

Ginn HL. Reference signal generators for distributed compensation. Przegld Elektrotech. 2015.

Savaghebi M, Vasquez JC, Jalilian A, Guerrero JM, Lee T-L. Selective

compensation of voltage harmonics in grid-connected microgrids. Math Comput Simul. 2013;91:211–28. doi: 10.1016/j.matcom.2012.05.015.

Meng L, Zhao X, Tang F, Savaghebi M, Dragicevic T, Vasquez JC, Guerrero JM. Distributed voltage unbalance compensation in islanded microgrids by using a dynamic consensus algorithm. IEEE Trans Power Electron. January 2016;31(1):827–38. doi: 10.1109/TPEL.2015.2408367.

Cheng PT, Chen CA, Lee TL, Kuo SY. A cooperative imbalance compensation method for distributed-generation interface converters. IEEE Trans on Ind Applicat. March 2009;45(2):805–15. doi: 10.1109/TIA.2009.2013601.

Czarnecki LS. Scattered and reactive current, voltage, and power in circuits with nonsinusoidal waveforms and their compensation [power systems]. IEEE Trans Instrum Meas. June 1991;40(3):563–74. doi: 10.1109/19.87020.

Czarnecki L. Currents’ physical components (cpc) concept: A fundamental of power theory. Prz Elektrotech. 2008;84:28–37.


Refbacks

  • There are currently no refbacks.