Open Access Open Access  Restricted Access Subscription or Fee Access

Proposing New and Novel Kalman Filter for Estimating Chemical and Nano Parameters

Saeid Zoghi

Abstract


The conservative input estimation methods assume constant input level and there are not shielded a universal input modeling. In this article, an innovative system is advanced to overcome these problems by using a new partitioned input dynamic modeling. In addition, author suggests an improved two-stage Kalman estimator with a new arrangement, which is an extension of the conventional input estimation methods and is optimal for common, linear discrete-time systems. At the end of this paper, we propose new application for this estimator in chemical engineering. Author of this paper, propose applying this for estimating and predicting density volume or amount of dopants that need for a special structure.

Keywords: chemical engineering, density, estimation and prediction

Full Text:

PDF

References


Khaloozadeh H., Karsaz A. A new state augmentation for maneuvering targets detection. Proc. 3th IEEE Int. Conf. on Signal Processing & Communication (SPCOM). 2005 Dec; 65–9p.

Mehrotra K., Mahapatra P.R., A jerk model for tracking highly maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 1997; 33(4): 1094–105p.

Mookerjee P., Reifler F. Reduced state estimators for consistent tracking of maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 1999; 41(2): 608–19p.

Chan Y.T., Hu A.G.C., Plant J.B., A Kalman filter based tracking scheme with input estimation. IEEE Trans. Aerosp. Electron. Syst. 1979; (15): 237–44p.

Li X.R., Jilkov V.P. A survey of maneuvering target tracking–Part IV: Decision-based methods. Proc. Conf. on Signal and Data Processing of Small Targets. Orlando, FL. 2002 Apr.; 4728: 511–34p.

Wang T.C., Varshney P.K. A tracking algorithm for maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 1993; 29(3): 910–24p.

Lee H., Tahk M.J. Generalized input-estimation technique for tracking maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 1999; 35(4): 1388–1402p.

Friedland B. Treatment of bias in recursive filtering. IEEE Trans. Automat. Contr. 1969; 14: 359–67p.

Blair W.D. Fixed-gain two-stage estimator for tracking maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 1993; 29(3): 1004–14p.

Hsieh C.S., Chen F.C. Optimal solution of the two-stage Kalman estimator. IEEE Trans. Automat. Contr. 1999; 44(1): 195–99p.

Hsieh C.S., Chen F.C. General two-stage Kalman filters. IEEE Trans. Automat. Contr. 2000; 45(4): 819–24p.

Kawase T., Tsurunosono H., Ehara N. et al. Two-stage Kalman estimator using an advanced circular prediction for tracking highly maneuvering targets. Proc. Int. Conf. on Acoustics, Speech and signal processing. 1998; 4: 2453–56p.

Qiu H.Z., Zhang H.Y., Sun X.F. Solution of two-stage Kalman filter. IEE Proc. Control Theory Appl. 2005; 152(2): 152–6p.

Khaloozadeh H., Karsaz A. Modified input estimation technique for tracking manoeuvring targets. IET Radar, sonar and Navig. 2009; 3(1): 30–41p.

Schweppe F.C. Uncertain Dynamic Systems. Prentice-Hall Press; 1973.

Karsaz A., Khaloozadeh H. An optimal two-stage algorithm for highly maneuvering targets tracking. Elsevier Signal Processing. 2009; 89(4): 532–47p.

Fermeglia, Miertus Process simulation and modeling for sustainable industrial development.

Karsaz H., Khaloozadeh H. Optimal partitioned state Kalman estimator. IEEE. 2010; Chin


Refbacks

  • There are currently no refbacks.